Makoto Michikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/189932/publications.pdf

Version: 2024-02-01

40 papers

2,078 citations

257450 24 h-index 39 g-index

40 all docs

40 docs citations

40 times ranked

2825 citing authors

#	Article	IF	CITATIONS
1	Presenilin Is Essential for ApoE Secretion, a Novel Role of Presenilin Involved in Alzheimer's Disease Pathogenesis. Journal of Neuroscience, 2022, 42, 1574-1586.	3.6	8
2	Probiotic Bifidobacterium breve Prevents Memory Impairment Through the Reduction of Both Amyloid- \hat{l}^2 Production and Microglia Activation in APP Knock-In Mouse 1. Journal of Alzheimer's Disease, 2022, 85, 1555-1571.	2.6	24
3	Insulin Deficiency Increases Sirt2 Level in Streptozotocin-Treated Alzheimer's Disease-Like Mouse Model: Increased Sirt2 Induces Tau Phosphorylation Through ERK Activation. Molecular Neurobiology, 2022, 59, 5408-5425.	4.0	7
4	Oral dysfunctions and cognitive impairment/dementia. Journal of Neuroscience Research, 2021, 99, 518-528.	2.9	36
5	Time-Dependent Analysis of Plasmalogens in the Hippocampus of an Alzheimer's Disease Mouse Model: A Role of Ethanolamine Plasmalogen. Brain Sciences, 2021, 11, 1603.	2.3	6
6	Beta-Amyloid Increases the Expression Levels of Tid1 Responsible for Neuronal Cell Death and Amyloid Beta Production. Molecular Neurobiology, 2020, 57, 1099-1114.	4.0	12
7	High temperature promotes amyloid \hat{l}^2 -protein production and \hat{l}^3 -secretase complex formation via Hsp90. Journal of Biological Chemistry, 2020, 295, 18010-18022.	3.4	14
8	A Cationic Gallium Phthalocyanine Inhibits Amyloid \hat{l}^2 Peptide Fibril Formation. Current Alzheimer Research, 2020, 17, 589-600.	1.4	1
9	A clinical dose of angiotensin-converting enzyme (ACE) inhibitor and heterozygous ACE deletion exacerbate Alzheimer's disease pathology in mice. Journal of Biological Chemistry, 2019, 294, 9760-9770.	3.4	32
10	Iron treatment inhibits AÎ ² 42 deposition inÂvivo and reduces AÎ ² 42/AÎ ² 40 ratio. Biochemical and Biophysical Research Communications, 2019, 512, 653-658.	2.1	6
11	Iso- $\hat{l}\pm$ -Acids, Bitter Components in Beer, Suppress Inflammatory Responses and Attenuate Neural Hyperactivation in the Hippocampus. Frontiers in Pharmacology, 2019, 10, 81.	3.5	8
12	Nasal obstruction during adolescence induces memory/learning impairments associated with BDNF/TrkB signaling pathway hypofunction and high corticosterone levels. Journal of Neuroscience Research, 2018, 96, 1056-1065.	2.9	9
13	Tau Depletion in APP Transgenic Mice Attenuates Task-Related Hyperactivation of the Hippocampus and Differentially Influences Locomotor Activity and Spatial Memory. Frontiers in Neuroscience, 2018, 12, 124.	2.8	24
14	Periodontitis induced by bacterial infection exacerbates features of Alzheimer's disease in transgenic mice. Npj Aging and Mechanisms of Disease, 2017, 3, 15.	4.5	141
15	ABCG1 and ABCG4 Suppress Î ³ -Secretase Activity and Amyloid Î ² Production. PLoS ONE, 2016, 11, e0155400.	2.5	36
16	Amyloid-Î ² Reduces Exosome ReleaseÂfromÂAstrocytes by Enhancing JNK Phosphorylation. Journal of Alzheimer's Disease, 2016, 53, 1433-1441.	2.6	35
17	Phosphatidylcholine protects neurons from toxic effects of amyloid \hat{l}^2 -protein in culture. Brain Research, 2016, 1642, 376-383.	2.2	28
18	Molar loss and powder diet leads to memory deficit and modifies the mRNA expression of brain-derived neurotrophic factor in the hippocampus of adult mice. BMC Neuroscience, 2016, 17, 81.	1.9	27

#	Article	IF	CITATIONS
19	Tooth loss might not alter molecular pathogenesis in an aged transgenic Alzheimer's disease model mouse. Gerodontology, 2016, 33, 308-314.	2.0	21
20	Angiotensin type $1a$ receptor deficiency decreases amyloid \hat{l}^2 -protein generation and ameliorates brain amyloid pathology. Scientific Reports, 2015, 5, 12059.	3.3	25
21	Arachidonic or Docosahexaenoic Acid Diet Prevents Memory Impairment in Tg2576 Mice. Journal of Alzheimer's Disease, 2015, 48, 149-162.	2.6	29
22	Arachidonic acid diet attenuates brain $A\hat{l}^2$ deposition in Tg2576 mice. Brain Research, 2015, 1613, 92-99.	2.2	29
23	Liquid diet induces memory impairment accompanied by a decreased number of hippocampal neurons in mice. Journal of Neuroscience Research, 2014, 92, 1010-1017.	2.9	23
24	ApoA-I/HDL Generation and Intracellular Cholesterol Transport through Cytosolic Lipid-Protein Particles in Astrocytes. Journal of Lipids, 2014, 2014, 1-9.	4.8	8
25	Auraptene Increases the Production of Amyloid- \hat{l}^2 via c-Jun N-Terminal Kinase-Dependent Activation of \hat{l}^3 -Secretase. Journal of Alzheimer's Disease, 2014, 43, 1215-1228.	2.6	5
26	AÎ ² 43 Is the Earliest-Depositing AÎ ² Species in APP Transgenic Mouse Brain and Is Converted to AÎ ² 41 by Two Active Domains of ACE. American Journal of Pathology, 2013, 182, 2322-2331.	3.8	39
27	Tooth loss induces memory impairment and neuronal cell loss in APP transgenic mice. Behavioural Brain Research, 2013, 252, 318-325.	2.2	65
28	AÎ ² 42-to-AÎ ² 40- and Angiotensin-converting Activities in Different Domains of Angiotensin-converting Enzyme. Journal of Biological Chemistry, 2009, 284, 31914-31920.	3.4	56
29	Novel Role of Presenilins in Maturation and Transport of Integrin \hat{I}^21 . Biochemistry, 2008, 47, 3370-3378.	2.5	31
30	Angiotensin-Converting Enzyme as a Potential Target for Treatment of Alzheimer's Disease: Inhibition or Activation?. Reviews in the Neurosciences, 2008, 19, 203-12.	2.9	24
31	Angiotensin-Converting Enzyme Converts Amyloid β-Protein 1–42 (Aβ _{1–42}) to Aβ _{1–40} , and Its Inhibition Enhances Brain Aβ Deposition. Journal of Neuroscience, 2007, 27, 8628-8635.	3 . 6	162
32	Oligomerization of amyloid ?-protein occurs during the isolation of lipid rafts. Journal of Neuroscience Research, 2005, 80, 114-119.	2.9	25
33	Cholesterol-mediated Neurite Outgrowth Is Differently Regulated between Cortical and Hippocampal Neurons*. Journal of Biological Chemistry, 2005, 280, 42759-42765.	3.4	74
34	Altered Cholesterol Metabolism in Niemann-Pick Type C1 Mouse Brains Affects Mitochondrial Function. Journal of Biological Chemistry, 2005, 280, 11731-11739.	3.4	179
35	Modulation of Amyloid Precursor Protein Cleavage by Cellular Sphingolipids. Journal of Biological Chemistry, 2004, 279, 11984-11991.	3.4	76
36	Amyloid \hat{l}^2 -protein (A \hat{l}^2)1-40 protects neurons from damage induced by A \hat{l}^2 1-42 in culture and in rat brain. Journal of Neurochemistry, 2003, 87, 609-619.	3.9	138

3

#	Article	IF	CITATIONS
37	A Novel Function of Monomeric Amyloid \hat{l}^2 -Protein Serving as an Antioxidant Molecule against Metal-Induced Oxidative Damage. Journal of Neuroscience, 2002, 22, 4833-4841.	3.6	296
38	Amyloid βâ€protein affects cholesterol metabolism in cultured neurons: Implications for pivotal role of cholesterol in the amyloid cascade. Journal of Neuroscience Research, 2002, 70, 438-446.	2.9	53
39	Cholesterol-dependent modulation of dendrite outgrowth and microtubule stability in cultured neurons. Journal of Neurochemistry, 2002, 80, 178-190.	3.9	118
40	A Novel Action of Alzheimer's Amyloid î²-Protein (Aβ): Oligomeric Aβ Promotes Lipid Release. Journal of Neuroscience, 2001, 21, 7226-7235.	3.6	148