
F Joseph Schork

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1899112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monomer transport in emulsion polymerization. Canadian Journal of Chemical Engineering, 2022, 100, 645-653.	1.7	9
2	Encapsulation of cellulose nanocrystals into acrylic latex particles via miniemulsion polymerization. Polymer, 2022, 240, 124488.	3.8	7
3	Monomer Transport in Emulsion Polymerization III Terpolymerization and Starvedâ€Feed Polymerization. Macromolecular Reaction Engineering, 2022, 16, .	1.5	6
4	Monomer Concentration in Polymer Particles in Emulsion Polymerization. Macromolecular Reaction Engineering, 2021, 15, 2100003.	1.5	6
5	Monomer Transport in Emulsion Polymerization II: Copolymerization. Macromolecular Reaction Engineering, 2021, 15, 2100022.	1.5	5
6	Fundamentals of Emulsion Polymerization. Biomacromolecules, 2020, 21, 4396-4441.	5.4	210
7	Heinz Gerrens Revisited: A New Look at the Impact of Reactor Type on Polymer Chain Morphology. Macromolecular Reaction Engineering, 2020, 14, 1900055.	1.5	4
8	Future manufacturing and remanufacturing of polymeric materials. Journal of Advanced Manufacturing and Processing, 2019, 1, .	2.4	5
9	Elongation of Model Prebiotic Proto-Peptides by Continuous Monomer Feeding. Macromolecules, 2017, 50, 9286-9294.	4.8	27
10	Kinetics of prebiotic depsipeptide formation from the ester–amide exchange reaction. Physical Chemistry Chemical Physics, 2016, 18, 28441-28450.	2.8	28
11	Ester Formation and Hydrolysis during Wet–Dry Cycles: Generation of Far-from-Equilibrium Polymers in a Model Prebiotic Reaction. Macromolecules, 2014, 47, 1334-1343.	4.8	94
12	A Polymer Reaction Engineering Approach to Polynucleotide Replication. Macromolecular Reaction Engineering, 2013, 7, 116-119.	1.5	1
13	RAFT Inverse Miniemulsion Polymerization of Acrylic Acid and Sodium Acrylate. Macromolecular Reaction Engineering, 2011, 5, 163-169.	1.5	22
14	Mathematical Modeling of Hyperbranched Waterâ€soluble Polymers with Applications in Drug Delivery. Macromolecular Reaction Engineering, 2011, 5, 373-384.	1.5	13
15	Synthesis and nucleation mechanism of inverse emulsion polymerization of acrylamide by RAFT polymerization: A comparative study. Polymer, 2011, 52, 63-67.	3.8	31
16	Modeling of Sequence Length and Distribution for the NM RP of Styrene and 4â€Methylstyrene in Batch and Semiâ€Batch Reactors. Macromolecular Reaction Engineering, 2010, 4, 197-209.	1.5	16
17	Synthesis of Wellâ€Ðefined Statistical and Diblock Copolymers of Acrylamide and Acrylic Acid by Inverse Miniemulsion Raft Polymerization. Macromolecular Chemistry and Physics, 2010, 211, 1977-1983.	2.2	22
18	Synthesis of Thermo-Sensitive Nanocapsules via Inverse Miniemulsion Polymerization Using a PEOâ^'RAFT Agent. Macromolecules, 2010, 43, 568-571.	4.8	56

F JOSEPH SCHORK

#	Article	IF	CITATIONS
19	Copolymer Sequence Distributions in Controlled Radical Polymerization. Macromolecular Reaction Engineering, 2009, 3, 118-130.	1.5	30
20	Miniemulsion Copolymerization of Ethylene and Vinyl Acetate. Macromolecular Reaction Engineering, 2009, 3, 412-418.	1.5	18
21	Relative Rates of Branching in Emulsion and Miniemulsion Polymerization. Macromolecular Reaction Engineering, 2009, 3, 539-542.	1.5	3
22	Mechanistic Aspects of Sterically Stabilized Controlled Radical Inverse Miniemulsion Polymerization. Macromolecules, 2009, 42, 3906-3916.	4.8	25
23	Design of Copolymer Molecular Architecture via Design of Continuous Reactor Systems for Controlled Radical Polymerization. Industrial & Engineering Chemistry Research, 2009, 48, 4245-4253.	3.7	27
24	Modeling and Control of Sequence Length Distribution for Controlled Radical (RAFT) Copolymerization. Industrial & Engineering Chemistry Research, 2009, 48, 10827-10839.	3.7	33
25	Emulsion and controlled miniemulsion polymerization of the renewable monomer γâ€methylâ€Î±â€methyleneâ€Î³â€butyrolactone. Journal of Polymer Science Part A, 2008, 46, 5929-5944.	2.3	49
26	A kinetic Monte Carlo study on the nucleation mechanisms of oilâ€soluble initiators in the miniemulsion polymerization of styrene. Journal of Polymer Science Part A, 2008, 46, 6114-6128.	2.3	17
27	Continuous Miniemulsion Polymerization. Macromolecular Reaction Engineering, 2008, 2, 287-303.	1.5	35
28	Hybrid Miniemulsion Polymerization of Acrylate/Oil and Acrylate/Fatty Acid Systems. Macromolecular Reaction Engineering, 2008, 2, 265-276.	1.5	44
29	Effects of Reversible Addition Fragmentation Transfer (RAFT) on Branching in Vinyl Acetate Bulk Polymerizationâ€. Industrial & Engineering Chemistry Research, 2008, 47, 509-523.	3.7	15
30	Emulsion and miniemulsion polymerization of isobornyl acrylate. Journal of Applied Polymer Science, 2007, 103, 819-833.	2.6	16
31	RAFT Inverse Miniemulsion Polymerization of Acrylamide. Macromolecular Rapid Communications, 2007, 28, 1010-1016.	3.9	59
32	Hybrid polymer latexes. Progress in Polymer Science, 2007, 32, 1439-1461.	24.7	102
33	Enzyme-Initiated Miniemulsion Polymerization. Biomacromolecules, 2006, 7, 2927-2930.	5.4	37
34	Modeling of the Inhibition Mechanism of Acrylic Acid Polymerization. Industrial & Engineering Chemistry Research, 2006, 45, 3001-3008.	3.7	28
35	Mass transfer and radical flux effects in dispersed-phase polymerization of isooctyl acrylate. Journal of Applied Polymer Science, 2006, 102, 5649-5666.	2.6	8
36	Impact of flow regime on polydispersity in tubular RAFT miniemulsion polymerization. AICHE Journal, 2006, 52, 1566-1576.	3.6	34

F JOSEPH SCHORK

#	Article	IF	CITATIONS
37	Modeling and inferential control of the batch acetylation of cellulose. AICHE Journal, 2006, 52, 2149-2160.	3.6	8
38	On the Stability of Miniemulsions in the Presence of RAFT Agents. Langmuir, 2006, 22, 9075-9078.	3.5	28
39	Continuous RAFT miniemulsion polymerization of styrene in a train of CSTRs. AICHE Journal, 2005, 51, 1009-1021.	3.6	36
40	Miniemulsion reversible addition fragmentation chain transfer polymerization of vinyl acetate. Journal of Polymer Science Part A, 2005, 43, 2188-2193.	2.3	54
41	Continuous Living Polymerization in Miniemulsion Using Reversible Addition Fragmentation Chain Transfer (RAFT) in a Tubular Reactorâ€. Industrial & Engineering Chemistry Research, 2005, 44, 2484-2493.	3.7	69
42	Particle morphology development in hybrid miniemulsion polymerization. Journal of Coatings Technology Research, 2004, 1, 53-63.	2.5	29
43	On the molecular weight distribution polydispersity of continuous living-radical polymerization. Journal of Applied Polymer Science, 2004, 92, 539-542.	2.6	22
44	Inhibition effects in emulsion and miniemulsion polymerization of monomers with extremely low water solubility. Journal of Applied Polymer Science, 2004, 94, 2555-2557.	2.6	11
45	Continuous Reversible Addition-Fragmentation Chain Transfer Polymerization in Miniemulsion Utilizing a Multi-Tube Reaction System. Macromolecular Rapid Communications, 2004, 25, 1064-1068.	3.9	77
46	Synthesis of Block Copolymers Using RAFT Miniemulsion Polymerization in a Train of CSTRs. Macromolecules, 2004, 37, 9345-9354.	4.8	54
47	Grafting mechanisms in hybrid miniemulsion polymerization. Journal of Applied Polymer Science, 2003, 87, 1825-1836.	2.6	63
48	Limiting Conversion Phenomenon in Hybrid Miniemulsion Polymerization. Polymer-Plastics Technology and Engineering, 2003, 11, 277-304.	0.7	36
49	Emulsion and miniemulsion polymerizations with an oil-soluble initiator in the presence and absence of an aqueous-phase radical scavenger. Journal of Polymer Science Part A, 2002, 40, 3200-3211.	2.3	61
50	Living Radical Polymerization by Reversible Additionâ^'Fragmentation Chain Transfer in Ionically Stabilized Miniemulsions. Macromolecules, 2001, 34, 3938-3946.	4.8	137
51	Theoretical Aspects of Particle Swelling in Living Free Radical Miniemulsion Polymerization. Macromolecules, 2001, 34, 5501-5507.	4.8	144
52	Emulsion copolymerization of butyl acrylate with cationic monomer using interfacial redox initiator system. Journal of Polymer Science Part A, 2001, 39, 2696-2709.	2.3	31
53	EMULSION/MINIEMULSION POLYMERIZATION OF BUTYL ACRYLATE WITH THE CUMENE HYDROPEROXIDE/TETRAETHLENEPENTAMINE REDOX INITIATOR. Polymer-Plastics Technology and Engineering, 2001, 9, 183-197.	0.7	4
54	DEVELOPING A CONTINUOUS EMULSION pBD-GRAFT-SAN POLYMERIZATION PROCESS: FACTORS IMPACTING MORPHOLOGY CONTROL. Polymer-Plastics Technology and Engineering, 2001, 9, 135-160.	0.7	5

F JOSEPH SCHORK

#	ARTICLE	IF	CITATIONS
55	MODEL COMPOUND STUDIES OF THE DEVULCANIZATION OF RUBBER VIA PHASE TRANSFER CATALYSIS. Polymer-Plastics Technology and Engineering, 2001, 9, 19-36.	0.7	3
56	Water-based crosslinkable coatings via miniemulsion polymerization of acrylic monomers in the presence of unsaturated polyester resin. Journal of Applied Polymer Science, 2000, 75, 916-927.	2.6	80
57	Living Radical Polymerization in Miniemulsion Using Reversible Additionâ^'Fragmentation Chain Transfer. Macromolecules, 2000, 33, 9239-9246.	4.8	211
58	Miniemulsion Copolymerization in Batch and Continuous Reactors. Industrial & Engineering Chemistry Research, 1999, 38, 1792-1800.	3.7	16
59	The Role of High Shear in Continuous Miniemulsion Polymerization. Industrial & Engineering Chemistry Research, 1999, 38, 1801-1807.	3.7	26
60	Miniemulsion polymerization of styrene with chain transfer agent as cosurfactant. Journal of Polymer Science Part A, 1997, 35, 595-603.	2.3	36
61	Relative shear stability of mini―and macroemulsion latexes. Journal of Applied Polymer Science, 1997, 66, 1317-1324.	2.6	8
62	Miniemulsion polymerization of methyl methacrylate with dodecyl mercaptan as cosurfactant. Journal of Polymer Science Part A, 1996, 34, 1073-1081.	2.3	64
63	ADAPTIVE POLE-PLACEMENT CONTROL OF A CONTINUOUS POLYMERIZATION REACTOR. Chemical Engineering Communications, 1988, 63, 157-179.	2.6	7
64	Miniemulsion Polymerization. Advances in Polymer Science, 0, , 129-255.	0.8	353
65	Nonionic Surfactants Promote the Incorporation of Silicone–Acrylic Hybrid Monomers in Emulsion Polymerization. ACS Applied Polymer Materials, 0, , .	4.4	1