
Sadhan C Jana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1898469/publications.pdf Version: 2024-02-01

ΝΟΗΛΝ Ο ΙΛΝΛ

#	Article	IF	CITATIONS
1	Fabrication and Characterization of Re-Entrant Honeycomb Polyurethane Aerogels. ACS Applied Polymer Materials, 2022, 4, 3791-3801.	2.0	5
2	A Review on Gel Polymer Electrolytes for Dye-Sensitized Solar Cells. Micromachines, 2022, 13, 680.	1.4	14
3	Surfactant-free oil-in-oil emulsion-templating of polyimide aerogel foams. International Polymer Processing, 2022, 37, 427-441.	0.3	2
4	Analysis of porous structures of cellulose aerogel monoliths and microparticles. Microporous and Mesoporous Materials, 2021, 310, 110625.	2.2	29
5	Surfactant-free syndiotactic polystyrene aerogel foams via Pickering emulsion. Polymer, 2021, 212, 123125.	1.8	21
6	Modular aerogel brick fabrication via 3D-printed molds. Additive Manufacturing, 2021, 46, 102059.	1.7	6
7	Fabrication of Pill-Shaped Polyimide Aerogel Particles Using Microfluidic Flows. Industrial & Engineering Chemistry Research, 2021, 60, 361-370.	1.8	8
8	Continuous fabrication of core-shell aerogel microparticles using microfluidic flows. Journal of Colloid and Interface Science, 2020, 561, 772-781.	5.0	16
9	Solid state polymer ionogel electrolyte for use in Liâ€ion batteries. SPE Polymers, 2020, 1, 55-65.	1.4	5
10	Effects of surface area and porosity on behavior of IL molecules in meso and macroporous polymeric networks. Polymer, 2020, 211, 123081.	1.8	1
11	May 2020 Editorial in <scp>PES</scp> . Polymer Engineering and Science, 2020, 60, 877-878.	1.5	0
12	Shrinkage reduced polyimide-graphene oxide composite aerogel for oil absorption. Microporous and Mesoporous Materials, 2020, 307, 110501.	2.2	35
13	Our Journey, Our Future. Polymer Composites, 2020, 41, 1699-1700.	2.3	Ο
14	May 2020 Editorial in <scp><i>JVAT</i></scp> . Journal of Vinyl and Additive Technology, 2020, 26, 111-112.	1.8	0
15	Bicomponent nanofibers from core–shell nozzle in gas jet spinning process. Journal of Applied Polymer Science, 2020, 137, 48901.	1.3	2
16	Fabrication of Hollow and Porous Tin-Doped Indium Oxide Nanofibers and Microtubes via a Gas Jet Fiber Spinning Process. Materials, 2020, 13, 1539.	1.3	3
17	Design Of Emulsion-Templated Mesoporous–Macroporous Polyurea Gels and Aerogels. ACS Applied Polymer Materials, 2019, 1, 3115-3129.	2.0	20
18	Strong and Flexible Composite Solid Polymer Electrolyte Membranes for Li-Ion Batteries. ACS Omega, 2019, 4, 18203-18209.	1.6	44

#	Article	IF	CITATIONS
19	Development of Intricate Aerogel Articles Using Fused Filament Fabrication. ACS Applied Polymer Materials, 2019, 1, 1749-1756.	2.0	14
20	Role of graphene oxide and functionalized graphene oxide in protective hybrid coatings. Progress in Organic Coatings, 2019, 134, 197-208.	1.9	42
21	Corrosion performance of polyurethane hybrid coatings with encapsulated inhibitor. Progress in Organic Coatings, 2019, 130, 235-243.	1.9	33
22	Mechanism and Factors Influencing Formation and Stability of Chitosan/Lignosulfonate Nanoparticles. Macromolecular Chemistry and Physics, 2019, 220, 1800338.	1.1	14
23	Surfactant-Free Process for the Fabrication of Polyimide Aerogel Microparticles. Langmuir, 2019, 35, 2303-2312.	1.6	14
24	Crosslinked polyurea-co-polyurethane aerogels with hierarchical structures and low stiffness. Journal of Non-Crystalline Solids, 2018, 487, 19-27.	1.5	24
25	Investigation of polybenzoxazine gelation using laser light scattering. Journal of Applied Polymer Science, 2018, 135, 45709.	1.3	6
26	Polyimide-based aerogel foams, via emulsion-templating. Polymer, 2018, 157, 95-102.	1.8	48
27	Fabrication of Hierarchical V ₂ O ₅ Nanorods on TiO ₂ Nanofibers and Their Enhanced Photocatalytic Activity under Visible Light. ChemCatChem, 2018, 10, 3305-3318.	1.8	70
28	Exploiting arene-perfluoroarene interactions for dispersion of carbon black in rubber compounds. Polymer, 2018, 148, 247-258.	1.8	47
29	Solvent Effects on Tuning Pore Structures in Polyimide Aerogels. Langmuir, 2018, 34, 8581-8590.	1.6	40
30	Electrostatically Active Polymer Hybrid Aerogels for Airborne Nanoparticle Filtration. ACS Applied Materials & Interfaces, 2017, 9, 6401-6410.	4.0	45
31	Effects of skin layers on air permeability in macroporous polymer aerogels. Polymer, 2017, 126, 432-436.	1.8	13
32	Open Cell Aerogel Foams via Emulsion Templating. Langmuir, 2017, 33, 12729-12738.	1.6	33
33	Influence of secondary stretching on diameter and morphology of bicomponent polymer nanofibers produced by gas jet fiber process. Polymer, 2017, 123, 219-231.	1.8	9
34	Open cell aerogel foams with hierarchical pore structures. Polymer, 2017, 125, 1-9.	1.8	25
35	Tuning Porous Networks in Polyimide Aerogels for Airborne Nanoparticle Filtration. ACS Applied Materials & Interfaces, 2017, 9, 30074-30082.	4.0	66
36	Syndiotactic Polystyrene-Based Ionogel Membranes for High Temperature Electrochemical Applications. ACS Applied Materials & Interfaces, 2017, 9, 30933-30942.	4.0	48

#	Article	IF	CITATIONS
37	Synergetic Hybrid Aerogels of Vanadia and Graphene as Electrode Materials of Supercapacitors. Journal of Carbon Research, 2016, 2, 21.	1.4	2
38	Aerogel Microparticles from Oil-in-Oil Emulsion Systems. Langmuir, 2016, 32, 5637-5645.	1.6	23
39	Morphology control of bi-component polymer nanofibers produced by gas jet process. Polymer, 2016, 93, 142-151.	1.8	24
40	Correlation of viscosity ratio, morphology, and mechanical properties of polyamide 12/natural rubber blends via reactive compatibilization. Journal of Polymer Research, 2016, 23, 1.	1.2	7
41	The role of mesopores in achieving high efficiency airborne nanoparticle filtration using aerogel monoliths. Separation and Purification Technology, 2016, 166, 48-54.	3.9	47
42	Separation of Water from Ultralow Sulfur Diesel Using Novel Polymer Nanofiber-Coated Glass Fiber Media. ACS Applied Materials & Interfaces, 2016, 8, 21683-21690.	4.0	26
43	Comparison of Electrospinning and Gas Jet Fiber Processes for Fabrication of Bi omponent Polymer Nanofibers from Single Solutions. Macromolecular Symposia, 2016, 369, 8-13.	0.4	8
44	Mesoporous Titanium Dioxide Nanofibers with a Significantly Enhanced Photocatalytic Activity. ChemCatChem, 2016, 8, 2525-2535.	1.8	57
45	Flow and structure of compatibilized Nylon12/natural rubber blend with functional copolymer. Journal of Elastomers and Plastics, 2016, 48, 614-639.	0.7	3
46	Hydrophobic silica aerogels by silylation. Journal of Non-Crystalline Solids, 2016, 437, 26-33.	1.5	27
47	Preparation and characterization of reactive blends of poly(lactic acid), poly(ethylene-co-vinyl) Tj ETQq1 1 0.784	4314.rgBT	/Overlock 10
48	Crosslinked polyurea aerogels with controlled porosity. RSC Advances, 2015, 5, 105329-105338.	1.7	48
49	Polymer aerogels for efficient removal of airborne nanoparticles. Separation and Purification Technology, 2015, 156, 803-808.	3.9	47
50	Bi-component inorganic oxide nanofibers from gas jet fiber spinning process. RSC Advances, 2015, 5, 105313-105318.	1.7	15
51	Polybenzoxazine aerogels with controllable pore structures. RSC Advances, 2015, 5, 26801-26805.	1.7	30
52	Self-crosslinkable poly(urethane urea)-reinforced silica aerogels. RSC Advances, 2015, 5, 71551-71558.	1.7	29
53	Effects of Polybenzoxazine on Shape Memory Properties of Polyurethanes with Amorphous and Crystalline Soft Segments. Polymers, 2014, 6, 1008-1025.	2.0	27
54	Effects of Polymer Viscosity and Nanofillers on Morphology of Nanofibers Obtained by a Gas Jet Method. International Polymer Processing, 2014, 29, 103-111.	0.3	13

#	Article	IF	CITATIONS
55	Polybutadiene-g-polypentafluorostyrene as a coupling agent for lignin-filled rubber compounds. Polymer, 2014, 55, 6754-6763.	1.8	26
56	Hybrid fillers of lignin and carbon black for lowering of viscoelastic loss in rubber compounds. Polymer, 2014, 55, 3825-3835.	1.8	81
57	Surface modification of lignosulfonates for reinforcement of styrene–butadiene rubber compounds. Journal of Applied Polymer Science, 2014, 131, .	1.3	34
58	Polymer reinforced silica aerogels: effects of dimethyldiethoxysilane and bis(trimethoxysilylpropyl)amine as silane precursors. Journal of Materials Chemistry A, 2013, 1, 6642.	5.2	52
59	Sulfonated syndiotactic polystyrene aerogels: properties and applications. Journal of Materials Chemistry A, 2013, 1, 13989.	5.2	27
60	Tailoring of Morphology and Surface Properties of Syndiotactic Polystyrene Aerogels. Langmuir, 2013, 29, 5589-5598.	1.6	46
61	Syndiotactic polystyrene aerogels containing multi-walled carbon nanotubes. Polymer, 2013, 54, 750-759.	1.8	49
62	Synergistic Hybrid Organic–Inorganic Aerogels. ACS Applied Materials & Interfaces, 2013, 5, 6423-6429.	4.0	104
63	Reinforcement of Silica Aerogels Using Silane-End-Capped Polyurethanes. Langmuir, 2013, 29, 6156-6165.	1.6	93
64	Synthesis and Characterization of Shapeâ€Memory Polyurethane–Polybenzoxazine Compounds. Macromolecular Chemistry and Physics, 2013, 214, 1225-1237.	1.1	49
65	Role of Liquid Jet Stretching and Bending Instability in Nanofiber Formation by Gas Jet Method. Macromolecules, 2013, 46, 6081-6090.	2.2	24
66	Natural Rubber-Toughened Polystyrene: Effects of Mixing Procedure and Maleic Anhydride Content on Impact Property and Phase Morphology. Advanced Materials Research, 2013, 747, 607-610.	0.3	2
67	- Application of Polymer Drugs to Medical Devices and Preparative Medicine. , 2013, , 192-241.		0
68	Polymer Nanocomposite Processing, Characterization, and Applications 2012. Journal of Nanomaterials, 2012, 2012, 1-1.	1.5	2
69	Transmission electron microscopy study of room temperature cured PMMA grafted natural rubber toughened epoxy/layered silicate nanocomposite. Plastics, Rubber and Composites, 2012, 41, 390-395.	0.9	1
70	Electrically Conductive Compounds of Polycarbonate, Liquid Crystalline Polymer, and Multiwalled Carbon Nanotubes. Journal of Nanomaterials, 2012, 2012, 1-10.	1.5	21
71	- Diffusion through Polymers Containing Platelike Nanomaterials. , 2012, , 490-517.		0
72	Nanofibers from Scalable Gas Jet Process. ACS Macro Letters, 2012, 1, 1032-1036.	2.3	71

Sadhan C Jana

#	Article	IF	CITATIONS
73	Morphological Study on Room-Temperature-Cured PMMA-Grafted Natural Rubber-Toughened Epoxy/Layered Silicate Nanocomposite. Journal of Nanomaterials, 2012, 2012, 1-14.	1.5	10
74	Exploiting POSS–Sorbitol Interactions: Issues of Reinforcement of Isotactic Polypropylene Spun Fibers. Macromolecules, 2012, 45, 2420-2433.	2.2	26
75	Surface Modification and Reinforcement of Silica Aerogels Using Polyhedral Oligomeric Silsesquioxanes. Langmuir, 2012, 28, 15362-15371.	1.6	66
76	New Antifouling Silica Hydrogel. Langmuir, 2012, 28, 9700-9706.	1.6	28
77	Self-assembled structure formation from interactions between polyhedral oligomeric silsesquioxane and sorbitol in preparation of polymer compounds. Polymer, 2012, 53, 1711-1724.	1.8	21
78	Sorbitol–POSS Interactions on Development of Isotactic Polypropylene Composites. Macromolecules, 2011, 44, 8064-8079.	2.2	40
79	Polymer Nanocomposite Processing, Characterization and Applications 2011. Journal of Nanomaterials, 2011, 2011, 1-1.	1.5	1
80	Analysis of energy transfer and ternary non-covalent filler/matrix/UV stabilizer interactions in carbon nanofiber and oxidized carbon nanofiber filled poly(methyl methacrylate) composites. Polymer, 2011, 52, 5355-5361.	1.8	9
81	Tailoring Mechanical Properties of Aerogels for Aerospace Applications. ACS Applied Materials & Interfaces, 2011, 3, 613-626.	4.0	482
82	Santosh K. Gupta: Professor extraordinaire and inspiration to several generations. Polymer Engineering and Science, 2011, 51, 1907-1908.	1.5	0
83	Polymer Nanocomposite Processing, Characterization, and Applications. Journal of Nanomaterials, 2010, 2010, 1-2.	1.5	3
84	Analysis of non-covalent interactions between the nanoparticulate fillers and the matrix polymer as applied to shape memory performance. Journal of Materials Chemistry, 2010, 20, 3467.	6.7	36
85	Rheological investigation of interactions between sorbitol and polyhedral oligomeric silsesquioxane in development of nanocomposites of isotactic polypropylene. Journal of Rheology, 2010, 54, 761-779.	1.3	13
86	Composites of carbon nanofibers and thermoplastic polyurethanes with shapeâ€memory properties prepared by chaotic mixing. Polymer Engineering and Science, 2009, 49, 2020-2030.	1.5	35
87	An Investigation on the Capillary Wetting of Glass Fiber Tow and Fabric Structures with Nanoclay-Enriched Reactive Epoxy and Silicone Oil Mixtures. ACS Applied Materials & Interfaces, 2009, 1, 1662-1671.	4.0	5
88	Carbonaceous fillers for shape memory actuation of polyurethane composites by resistive heating. Carbon, 2009, 47, 981-997.	5.4	148
89	Effect of thermal expansion on shape memory behavior of polyurethane and its nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1437-1449.	2.4	61
90	Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer, 2008, 49, 2223-2234.	1.8	229

#	Article	IF	CITATIONS
91	Hygrothermal effects on properties of highly conductive epoxy/graphite composites for applications as bipolar plates. Journal of Power Sources, 2008, 182, 223-229.	4.0	27
92	Shape Memory Actuation by Resistive Heating in Polyurethane Composites of Carbonaceous Conductive Fillers. Materials Research Society Symposia Proceedings, 2008, 1129, 1.	0.1	0
93	Shape Memory Polymers and Their Nanocomposites: A Review of Science and Technology of New Multifunctional Materials. Journal of Nanoscience and Nanotechnology, 2008, 8, 1616-1637.	0.9	149
94	Shape Memory Polymers and Their Nanocomposites: A Review of Science and Technology of New Multifunctional Materials. Journal of Nanoscience and Nanotechnology, 2008, 8, 1616-1637.	0.9	45
95	Shape memory polymers and their nanocomposites: a review of science and technology of new multifunctional materials. Journal of Nanoscience and Nanotechnology, 2008, 8, 1616-37.	0.9	14
96	Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. Composites Part A: Applied Science and Manufacturing, 2007, 38, 983-993.	3.8	81
97	Analysis of Polymerization in Chaotic Mixers Using Time Scales of Mixing and Chemical Reactions. Industrial & Engineering Chemistry Research, 2007, 46, 2413-2422.	1.8	14
98	Oxidized carbon nanofiber/polymer composites prepared by chaotic mixing. Carbon, 2007, 45, 2079-2091.	5.4	54
99	Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells. Journal of Power Sources, 2007, 172, 734-741.	4.0	144
100	Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer, 2007, 48, 3790-3800.	1.8	204
101	A novel strategy for nanoclay exfoliation in thermoset polyimide nanocomposite systems. Polymer, 2007, 48, 4166-4173.	1.8	43
102	An optimum organic treatment of nanoclay for PMR-15 nanocomposites. Polymer, 2007, 48, 7573-7581.	1.8	5
103	Production of electrically conductive networks in immiscible polymer blends by chaotic mixing. Polymer Engineering and Science, 2006, 46, 19-28.	1.5	29
104	Clay Nanocomposites of Polyurethanes and Epoxies: Preparation Methods and Properties. , 2006, , 419-450.		0
105	Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. Polymer, 2005, 46, 3275-3288.	1.8	154
106	Properties of bulk-polymerized thermoplastic polyurethane nanocomposites. Polymer, 2005, 46, 3394-3406.	1.8	141
107	Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer, 2005, 46, 5183-5193.	1.8	142
108	Coalescence of immiscible polymer blends in chaotic mixers. AICHE Journal, 2005, 51, 2675-2685.	1.8	16

#	Article	IF	CITATIONS
109	Thermal decomposition of alkyl ammonium ions and its effects on surface polarity of organically treated nanoclay. Polymer, 2005, 46, 10139-10147.	1.8	82
110	Nanoclay-induced morphology development in chaotic mixing of immiscible polymers. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3638-3651.	2.4	53
111	High-strength and low-stiffness composites of nanoclay-filled thermoplastic polyurethanes. Polymer Engineering and Science, 2005, 45, 1532-1539.	1.5	36
112	A study on the effects of chaotic mixer design and operating conditions on morphology development in immiscible polymer systems. Polymer Engineering and Science, 2004, 44, 407-422.	1.5	33
113	Shear-induced migration of conductive fillers in injection molding. Polymer Engineering and Science, 2004, 44, 2101-2109.	1.5	33
114	A time-scale approach for analysis of coalescence in processing flows. Polymer Engineering and Science, 2004, 44, 2254-2265.	1.5	20
115	Effect of waveforms on morphology development in chaotic mixing of polymers. AICHE Journal, 2004, 50, 2346-2358.	1.8	13
116	Effects of viscosity ratio and composition on development of morphology in chaotic mixing of polymers. Polymer, 2004, 45, 1665-1678.	1.8	72
117	Adverse effects of thermal dissociation of alkyl ammonium ions on nanoclay exfoliation in epoxy–clay systems. Polymer, 2004, 45, 7673-7679.	1.8	62
118	The relationship between nano- and micro-structures and mechanical properties in PMMA–epoxy–nanoclay composites. Polymer, 2003, 44, 2091-2100.	1.8	211
119	Loss of surface and volume electrical conductivities in polymer compounds due to shear-induced migration of conductive particles. Polymer Engineering and Science, 2003, 43, 570-579.	1.5	17
120	A study on the use of phenoxy resins as compatibilizers of polyamide 6 (PA6) and polybutylene terephthalate (PBT). Polymer Engineering and Science, 2003, 43, 580-595.	1.5	41
121	Mechanism of Exfoliation of Nanoclay Particles in Epoxyâ^ Clay Nanocomposites. Macromolecules, 2003, 36, 2758-2768.	2.2	311
122	Effect of Plasticization of Epoxy Networks by Organic Modifier on Exfoliation of Nanoclay. Macromolecules, 2003, 36, 8391-8397.	2.2	122
123	Natural fiber composites of high-temperature thermoplastic polymers: Effects of coupling agents. Journal of Applied Polymer Science, 2002, 86, 2168-2173.	1.3	33
124	On the development of natural fiber composites of high-temperature thermoplastic polymers. Journal of Applied Polymer Science, 2002, 86, 2159-2167.	1.3	43
125	Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer, 2001, 42, 6897-6905.	1.8	196
126	Compatibilization of PBT–PPE blends using low molecular weight epoxy. Polymer, 2001, 42, 8681-8693.	1.8	37

#	Article	IF	CITATIONS
127	APPLICATION OF BOUNDARY INTEGRAL TECHNIQUES TO FLUID TRACKING AND MIXING. Chemical Engineering Communications, 1996, 148-150, 347-362.	1.5	Ο
128	Apparent wall slip velocity coefficients in concentrated suspensions of noncolloidal particles. Journal of Rheology, 1995, 39, 1123-1132.	1.3	120
129	Chaotic mixing of viscous fluids by periodic changes in geometry: Baffled cavity flow. AICHE Journal, 1994, 40, 1769-1781.	1.8	67
130	Experimental and computational studies of mixing in complex Stokes flows: the vortex mixing flow and multicellular cavity flows. Journal of Fluid Mechanics, 1994, 269, 199-246.	1.4	168
131	Chaos, Symmetry, and Self-Similarity: Exploiting Order and Disorder in Mixing Processes. Science, 1992, 257, 754-760.	6.0	178
132	COUNTERCURRENT GAS ABSORPTION WITH CHEMICAL REACTION IN A LAMINAR FALLING FILM. Chemical Engineering Communications, 1989, 79, 27-37.	1.5	5
133	Irreversible step growth polymerization having segmental diffusion limitations in HCSTRs—simulation and steady state multiplicity. Journal of Applied Polymer Science, 1989, 38, 979-995.	1.3	0
134	Phase Morphology, Thermal and Mechanical Properties of Compatibilized Nylon12/Natural Rubber Blends Using PS/MNR. Advanced Materials Research, 0, 844, 53-56.	0.3	0