David J Segal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1898434/publications.pdf Version: 2024-02-01

		57758	51608
117	7,961	44	86
papers	citations	h-index	g-index
127	127	127	6851
all docs	docs citations	times ranked	citing authors

DAVID | SECAL

#	Article	IF	CITATIONS
1	Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases. Molecular and Cellular Biology, 2001, 21, 289-297.	2.3	564
2	Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nature Biotechnology, 2007, 25, 786-793.	17.5	492
3	Toward controlling gene expression at will: Specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14628-14633.	7.1	490
4	Toward controlling gene expression at will: Selection and design of zinc finger domains recognizing each of the 5'-GNN-3' DNA target sequences. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2758-2763.	7.1	412
5	Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5525-5530.	7.1	297
6	Development of Zinc Finger Domains for Recognition of the 5′-ANN-3′ Family of DNA Sequences and Their Use in the Construction of Artificial Transcription Factors. Journal of Biological Chemistry, 2001, 276, 29466-29478.	3.4	287
7	SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature, 2014, 507, 124-128.	27.8	271
8	Keep Your Fingers Off My DNA: Protein–Protein Interactions Mediated by C2H2 Zinc Finger Domains. Cell Biochemistry and Biophysics, 2008, 50, 111-131.	1.8	255
9	A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Research, 2015, 43, 3389-3404.	14.5	193
10	Targeted DNA demethylation of the <i>Arabidopsis</i> genome using the human TET1 catalytic domain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2125-E2134.	7.1	190
11	Design, construction and in vitro testing of zinc finger nucleases. Nature Protocols, 2006, 1, 1329-1341.	12.0	177
12	Development of Zinc Finger Domains for Recognition of the 5′-CNN-3′ Family DNA Sequences and Their Use in the Construction of Artificial Transcription Factors. Journal of Biological Chemistry, 2005, 280, 35588-35597.	3.4	166
13	Designing Transcription Factor Architectures for Drug Discovery. Molecular Pharmacology, 2004, 66, 1361-1371.	2.3	162
14	Evaluation of a Modular Strategy for the Construction of Novel Polydactyl Zinc Finger DNA-Binding Proteinsâ€. Biochemistry, 2003, 42, 2137-2148.	2.5	161
15	dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Research, 2017, 45, 9901-9916.	14.5	160
16	Custom Zinc-Finger Nucleases for Use in Human Cells. Molecular Therapy, 2005, 12, 610-617.	8.2	157
17	Quantitative analysis of TALE–DNA interactions suggests polarity effects. Nucleic Acids Research, 2013, 41, 4118-4128.	14.5	153
18	Insights into the molecular recognition of the 5′-GNN-3′ family of DNA sequences by zinc finger domains 1 1Edited by M. Yaniv. Journal of Molecular Biology, 2000, 303, 489-502.	4.2	144

#	Article	IF	CITATIONS
19	Bind-n-Seq: high-throughput analysis of in vitro protein–DNA interactions using massively parallel sequencing. Nucleic Acids Research, 2009, 37, e151-e151.	14.5	125
20	Genome Engineering at the Dawn of the Golden Age. Annual Review of Genomics and Human Genetics, 2013, 14, 135-158.	6.2	109
21	Recombination Induced by Triple-Helix-Targeted DNA Damage in Mammalian Cells. Molecular and Cellular Biology, 1996, 16, 6820-6828.	2.3	107
22	Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics and Chromatin, 2019, 12, 26.	3.9	101
23	How specific is CRISPR/Cas9 really?. Current Opinion in Chemical Biology, 2015, 29, 72-78.	6.1	97
24	Custom DNA-binding proteins come of age: polydactyl zinc-finger proteins. Current Opinion in Biotechnology, 2001, 12, 632-637.	6.6	96
25	Direct detection of double-stranded DNA: molecular methods and applications for DNA diagnostics. Molecular BioSystems, 2006, 2, 551.	2.9	95
26	Fusion Proteins Consisting of Human Immunodeficiency Virus Type 1 Integrase and the Designed Polydactyl Zinc Finger Protein E2C Direct Integration of Viral DNA into Specific Sites. Journal of Virology, 2004, 78, 1301-1313.	3.4	89
27	Highly active zinc-finger nucleases by extended modular assembly. Genome Research, 2013, 23, 530-538.	5.5	88
28	DNA Sequence-Enabled Reassembly of the Green Fluorescent Protein. Journal of the American Chemical Society, 2005, 127, 10782-10783.	13.7	87
29	Structure of Aart, a Designed Six-finger Zinc Finger Peptide, Bound to DNA. Journal of Molecular Biology, 2006, 363, 405-421.	4.2	87
30	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
31	Site-Specific Detection of DNA Methylation Utilizing mCpG-SEER. Journal of the American Chemical Society, 2006, 128, 9761-9765.	13.7	78
32	Attenuation of HIV-1 Replication in Primary Human Cells with a Designed Zinc Finger Transcription Factor. Journal of Biological Chemistry, 2004, 279, 14509-14519.	3.4	77
33	The Protein-Binding Potential of C2H2 Zinc Finger Domains. Cell Biochemistry and Biophysics, 2008, 51, 9-19.	1.8	75
34	Guiding the Design of Synthetic DNA-Binding Molecules with Massively Parallel Sequencing. Journal of the American Chemical Society, 2012, 134, 17814-17822.	13.7	75
35	Design of novel sequence-specific DNA-binding proteins. Current Opinion in Chemical Biology, 2000, 4, 34-39.	6.1	68
36	Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain. Molecular Therapy, 2016, 24, 548-555.	8.2	67

#	Article	IF	CITATIONS
37	The prospects for designer single-stranded RNA-binding proteins. Nature Structural and Molecular Biology, 2011, 18, 256-261.	8.2	59
38	Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Research, 2013, 41, 9197-9207.	14.5	59
39	The Generation of Zinc Finger Proteins by Modular Assembly. Methods in Molecular Biology, 2010, 649, 3-30.	0.9	59
40	Sequence-Enabled Reassembly of β-Lactamase (SEER-LAC):  A Sensitive Method for the Detection of Double-Stranded DNA. Biochemistry, 2006, 45, 3620-3625.	2.5	56
41	Split β-Lactamase Sensor for the Sequence-Specific Detection of DNA Methylation. Analytical Chemistry, 2007, 79, 6702-6708.	6.5	53
42	Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts. Cell Transplantation, 2016, 25, 677-686.	2.5	53
43	Translational outcomes in a full gene deletion of ubiquitin protein ligase E3A rat model of Angelman syndrome. Translational Psychiatry, 2020, 10, 39.	4.8	50
44	Inhibition of Human Immunodeficiency Virus Type 1 Replication with Artificial Transcription Factors Targeting the Highly Conserved Primer-Binding Site. Journal of Virology, 2006, 80, 2873-2883.	3.4	49
45	Active integration: new strategies for transgenesis. Transgenic Research, 2007, 16, 333-339.	2.4	48
46	The Shelterin TIN2 Subunit Mediates Recruitment of Telomerase to Telomeres. PLoS Genetics, 2015, 11, e1005410.	3.5	47
47	The use of zinc finger peptides to study the role of specific factor binding sites in the chromatin environment. Methods, 2002, 26, 76-83.	3.8	46
48	Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Research, 2012, 40, 6978-6991.	14.5	46
49	Endonuclease-induced, targeted homologous extrachromosomal recombination in Xenopus oocytes Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 806-810.	7.1	44
50	Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction. Trends in Biotechnology, 2005, 23, 399-406.	9.3	44
51	Site-directed genome modification: derivatives of DNA-modifying enzymes as targeting tools. Trends in Biotechnology, 2005, 23, 407-419.	9.3	43
52	Uranyl Acetate as a Direct Inhibitor of DNA-Binding Proteins. Chemical Research in Toxicology, 2007, 20, 784-789.	3.3	41
53	UBE3A: An E3 Ubiquitin Ligase With Genome-Wide Impact in Neurodevelopmental Disease. Frontiers in Molecular Neuroscience, 2018, 11, 476.	2.9	41
54	Zinc fingers and a green thumb: manipulating gene expression in plants. Current Opinion in Plant Biology, 2003, 6, 163-168.	7.1	40

#	Article	IF	CITATIONS
55	Critical Parameters for Genome Editing Using Zinc Finger Nucleases. Mini-Reviews in Medicinal Chemistry, 2008, 8, 669-676.	2.4	40
56	Toward a General Approach for RNA-Templated Hierarchical Assembly of Split-Proteins. Journal of the American Chemical Society, 2010, 132, 11692-11701.	13.7	39
57	Restricted spacer tolerance of a zinc finger nuclease with a six amino acid linker. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3970-3972.	2.2	36
58	New Insights into DNA Recognition by Zinc Fingers Revealed by Structural Analysis of the Oncoprotein ZNF217. Journal of Biological Chemistry, 2013, 288, 10616-10627.	3.4	36
59	Adding Fingers to an Engineered Zinc Finger Nuclease Can Reduce Activity. Biochemistry, 2011, 50, 5033-5041.	2.5	33
60	Effects on the transcriptome upon deletion of a distal element cannot be predicted by the size of the H3K27Ac peak in human cells. Nucleic Acids Research, 2016, 44, 4123-4133.	14.5	32
61	Artificial escape from XCI by DNA methylation editing of the CDKL5 gene. Nucleic Acids Research, 2020, 48, 2372-2387.	14.5	30
62	A zinc finger protein array for the visual detection of specific DNA sequences for diagnostic applications. Nucleic Acids Research, 2011, 39, e29-e29.	14.5	28
63	Strategies for the Enrichment and Selection of Genetically Modified Cells. Trends in Biotechnology, 2019, 37, 56-71.	9.3	28
64	Generation of a Novel Rat Model of Angelman Syndrome with a Complete <i>Ube3a</i> Gene Deletion. Autism Research, 2020, 13, 397-409.	3.8	28
65	Engineering zinc finger protein transcription factors to downregulate the epithelial glycoprotein-2 promoter as a novel anti-cancer treatment. Molecular Carcinogenesis, 2007, 46, 391-401.	2.7	27
66	Generation and Functional Analysis of Zinc Finger Nucleases. , 2008, 434, 277-290.		26
67	Functional rescue in an Angelman syndrome model following treatment with lentivector transduced hematopoietic stem cells. Human Molecular Genetics, 2021, 30, 1067-1083.	2.9	25
68	The prospect of molecular therapy for Angelman syndrome and other monogenic neurologic disorders. BMC Neuroscience, 2014, 15, 76.	1.9	24
69	Early Developmental EEG and Seizure Phenotypes in a Full Gene Deletion of Ubiquitin Protein Ligase E3A Rat Model of Angelman Syndrome. ENeuro, 2021, 8, ENEURO.0345-20.2020.	1.9	20
70	UBE3A-mediated regulation of imprinted genes and epigenome-wide marks in human neurons. Epigenetics, 2017, 12, 982-990.	2.7	18
71	Positron emission tomography imaging of novel AAV capsids maps rapid brain accumulation. Nature Communications, 2020, 11, 2102.	12.8	17
72	Determinants of heritable gene silencing for KRAB-dCas9Â+ÂDNMT3 and Ezh2-dCas9Â+ÂDNMT3 hit-and-run epigenome editing. Nucleic Acids Research, 2022, 50, 3239-3253.	14.5	17

#	Article	lF	CITATIONS
73	Live-Animal Epigenome Editing: Convergence of Novel Techniques. Trends in Genetics, 2019, 35, 527-541.	6.7	15
74	Miz-1 Activates Gene Expression via a Novel Consensus DNA Binding Motif. PLoS ONE, 2014, 9, e101151.	2.5	14
75	Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the <i>Ube3a</i> Deletion Rat Model of Angelman Syndrome. Journal of Neuroscience, 2021, 41, 8801-8814.	3.6	13
76	Cold-Sensitive Mutants of Bacteriophage φX174. II. Comparison of Two Cold-Sensitive Mutants. Journal of Virology, 1974, 14, 1115-1125.	3.4	13
77	Engineered Zinc Finger Proteins. Methods in Molecular Biology, 2010, , .	0.9	11
78	Pathogen-specific DNA sensing with engineered zinc finger proteins immobilized on a polymer chip. Analyst, The, 2018, 143, 4009-4016.	3.5	11
79	Bacteria herald a new era of gene editing. ELife, 2013, 2, e00563.	6.0	11
80	Aberrant promoter methylation contributes to LRIG1 silencing in basal/triple-negative breast cancer. British Journal of Cancer, 2022, 127, 436-448.	6.4	11
81	Systematic evaluation of split-fluorescent proteins for the direct detection of native and methylated DNA. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3748-3751.	2.2	10
82	Versatile 3′ Functionalization of CRISPR Single Guide RNA. ChemBioChem, 2020, 21, 1633-1640.	2.6	10
83	The Functional Significance of Common Polymorphisms in Zinc Finger Transcription Factors. G3: Genes, Genomes, Genetics, 2014, 4, 1647-1655.	1.8	9
84	Imprinting effects of UBE3A loss on synaptic gene networks and Wnt signaling pathways. Human Molecular Genetics, 2019, 28, 3842-3852.	2.9	9
85	Exploring the suitability of RanBP2-type Zinc Fingers for RNA-binding protein design. Scientific Reports, 2019, 9, 2484.	3.3	9
86	Methods for Scarless, Selection-Free Generation of Human Cells and Allele-Specific Functional Analysis of Disease-Associated SNPs and Variants of Uncertain Significance. Scientific Reports, 2017, 7, 15044.	3.3	8
87	Unexpected binding behaviors of bacterial Argonautes in human cells cast doubts on their use as targetable gene regulators. PLoS ONE, 2018, 13, e0193818.	2.5	8
88	Processing of Targeted Psoralen Cross-Links in <i>Xenopus</i> Oocytes. Molecular and Cellular Biology, 1997, 17, 6645-6652.	2.3	7
89	From catalytic asymmetric synthesis to the transcriptional regulation of genes: In vivo and in vitro evolution of proteins. Advances in Protein Chemistry, 2001, 55, 317-366.	4.4	7
90	Zinc-finger nucleases transition to the CoDA. Nature Methods, 2011, 8, 53-55.	19.0	7

#	Article	IF	CITATIONS
91	Modular Assembly of RanBP2â€Type Zinc Finger Domains to Target Singleâ€Stranded RNA. Angewandte Chemie - International Edition, 2012, 51, 5371-5375.	13.8	7
92	Purified Protein Delivery to Activate an Epigenetically Silenced Allele in Mouse Brain. Methods in Molecular Biology, 2018, 1767, 227-239.	0.9	6
93	In Vivo Applications of Cell-Penetrating Zinc-Finger Transcription Factors. Methods in Molecular Biology, 2018, 1867, 239-251.	0.9	6
94	Engineering Specificity Changes on a RanBP2 Zinc Finger that Binds Single‣tranded RNA. Angewandte Chemie - International Edition, 2014, 53, 7848-7852.	13.8	5
95	Conformational Elasticity can Facilitate TALE–DNA Recognition. Advances in Protein Chemistry and Structural Biology, 2014, 94, 347-364.	2.3	5
96	Editorial: Precise Genome Editing Techniques and Applications. Frontiers in Genetics, 2020, 11, 412.	2.3	5
97	Crystallization and preliminary X-ray crystallographic analysis of Aart, a designed six-finger zinc-finger peptide, bound to DNA. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 573-576.	0.7	3
98	The promise of gene editing: so close and yet so perilously far. Frontiers in Genome Editing, 0, 4, .	5.2	3
99	Is there a telltale RH fingerprint in zinc fingers that recognizes methylated CpG dinucleotides?. Trends in Biochemical Sciences, 2013, 38, 421-422.	7.5	2
100	Grand Challenges in Gene and Epigenetic Editing for Neurologic Disease. Frontiers in Genome Editing, 2020, 1, 1.	5.2	2
101	An in vivo Cell-Based Delivery Platform for Zinc Finger Artificial Transcription Factors in Pre-clinical Animal Models. Frontiers in Molecular Neuroscience, 2021, 14, 789913.	2.9	2
102	Imaging Unique DNA Sequences in Individual Cells Using a CRISPR-Cas9-Based, Split Luciferase Biosensor. Frontiers in Genome Editing, 2022, 4, 867390.	5.2	2
103	Beyond the genome and into the clinic. Genome Medicine, 2012, 4, 78.	8.2	1
104	The Right Tools for the Right Job: CRISPR-pass Could Offer Safe Gene Correction for Many Disorders. Molecular Therapy, 2019, 27, 1346-1347.	8.2	1
105	Seeing Genetic and Epigenetic Information Without DNA Denaturation Using Sequence-Enabled Reassembly (SEER). Methods in Molecular Biology, 2010, 649, 365-382.	0.9	1
106	Zinc-finger exercisesThe â€~cutting edge' of gene therapy … literally. Biochemist, 2008, 30, 10-13.	0.5	1
107	Sequence-Enabled Reassembly (SEER) Peptides for the Detection of DNA Sequences. , 2006, , 214-215.		0
108	973. SEquence-Enabled Reassembly of β- Lactamase (SEER-LAC): A Sensitive Method for the Detection of Double-Stranded DNA. Molecular Therapy, 2006, 13, S374.	8.2	0

#	Article	IF	CITATIONS
109	Dissecting the genetic architecture of coronary artery disease by genome engineering. BMC Proceedings, 2012, 6, .	1.6	0
110	Carlos F. Barbas III (1964–2014): Visionary at the Interface of Chemistry and Biology. ACS Chemical Biology, 2014, 9, 1645-1646.	3.4	0
111	A Method for Validating Mutations Associated with Malignant Hyperthermia using CRISPR/Cas9 and Dual Integrase Cassette Exchange. Biophysical Journal, 2017, 112, 98a.	0.5	0
112	Blood-brain barrier disruption for the delivery of non-infectious viral vectors and proteins, preliminary study. , 2017, , .		0
113	Blood-brain barrier disruption for the delivery of non-infectious viral vectors and proteins, preliminary study. , 2017, , .		0
114	Abstract 1117: Who's in the driver's seat? Identifying causative variants of colorectal cancer. , 2015, , .		0
115	Abstract 1445: Understanding the 8q24 colorectal cancer risk locus via CRISPR/Cas9 scarless genome editing. , 2017, , .		0
116	Abstract 394: Elucidating tissue-specific effects of the 8q24 multicancer risk locus via CRISPR/Cas9 scarless genome editing. , 2018, , .		0
117	Abstract B05: Comprehensive functional modeling of pan-cancer risk SNP rs6983267 in human CRC cells via scarless CRISPR/Cas9 genome editing 2020		Ο

ъ