
Kyoung-Woong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/189824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil contamination and health risk assessment from heavy metals exposure near mining area in Bac Kan province, Vietnam. Environmental Geochemistry and Health, 2022, 44, 1189-1202.	1.8	19
2	Predicting As Contamination Risk in Red River Delta using Machine Learning Algorithms. Economic and Environmental Geology, 2022, 55, 127-135.	0.2	0
3	Novel application of xanthan gum-based biopolymer for heavy metal immobilization in soil. Journal of Environmental Chemical Engineering, 2022, 10, 108240.	3.3	9
4	The bioleaching assessment for nuclear power plant-soil contaminated with Co and Cs using A.Thiooxidans sp. Journal of Environmental Chemical Engineering, 2021, 9, 104791.	3.3	7
5	The interplay between environmental exposures and COVID-19 risks in the health of children. Environmental Health, 2021, 20, 34.	1.7	13
6	Influence of Mining Activities on Arsenic Concentration in Rice in Asia: A Review. Minerals (Basel,) Tj ETQq0 0 0 r	rgBT /Over	lock 10 Tf 50 !
7	Assessing Salinization and Water Quality in Koh Kong Coastal Areas of Cambodia: Potential Impacts of Climate Change. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	63
8	Lead contamination of the mining and smelting district in Mitrovica, Kosovo. Environmental Geochemistry and Health, 2020, 42, 1033-1044.	1.8	11
9	Human health risk assessment of cadmium exposure through rice consumption in cadmium-contaminated areas of the Mae Tao sub-district, Tak, Thailand. Environmental Geochemistry and Health, 2020, 42, 2331-2344.	1.8	29
10	A study on Pb removal kinetics using modified agricultural wastes from Tanzania. SN Applied Sciences, 2020, 2, 1.	1.5	3
11	Variability of water quality and metal pollution index in the Ganges River, Bangladesh. Environmental Science and Pollution Research, 2020, 27, 42582-42599.	2.7	49

12	Comparison of five extraction methods for evaluating cadmium and zinc immobilization in soil. Environmental Geochemistry and Health, 2020, 42, 4203-4212.	1.8	14
13	One-pot fabrication of amino acid and peptide stabilized gold nanoclusters for the measurement of the lead in plasma samples using chemically modified cellulose paper. Sensors and Actuators B: Chemical, 2020, 322, 128603.	4.0	19
14	Contamination of heavy metals in paddy soil in the vicinity of Nui Phao multi-metal mine, North Vietnam. Environmental Geochemistry and Health, 2020, 42, 4141-4158.	1.8	23
15	Assessment and source identification of As and Cd contamination in soil and plants in the vicinity of the Nui Phao Mine, Vietnam. Environmental Geochemistry and Health, 2020, 42, 4193-4201.	1.8	13

16	Probabilistic assessment of the daily intake of microelements and toxic elements via the consumption of rice with different degrees of polishing. Journal of the Science of Food and Agriculture, 2020, 100, 4029-4039.	1.7	7

 17
 Global Market and Field Studies of Arsenic Accumulation in Rice., 2020, 235-260.
 2

 18
 Assessment of the stabilization of heavy metal contaminants in soils using chemical leaching and an earthworm bioassay. Environmental Geochemistry and Health, 2019, 41, 447-460.
 1.8
 15

#	Article	IF	CITATIONS
19	Influence of chloride ions on the reduction of mercury species in the presence of dissolved organic matter. Environmental Geochemistry and Health, 2019, 41, 71-79.	1.8	13
20	Assessment of water quality and trace metal contaminations in Mondolkiri province in the Northeastern part of Cambodia. Environmental Geochemistry and Health, 2019, 41, 401-409.	1.8	7
21	Arsenic health risk assessment related to rice consumption behaviors in adults living in Northern Thailand. Environmental Monitoring and Assessment, 2019, 191, 674.	1.3	10
22	Geo-ecological evaluation of mineral, major and trace elemental composition in waste rocks, soils and sediments of a gold mining area and potential associated risks. Catena, 2019, 183, 104229.	2.2	34
23	Uptake of arsenic and heavy metals by native plants growing near Nui Phao multi-metal mine, northern Vietnam. Applied Geochemistry, 2019, 108, 104368.	1.4	27
24	Exposure to arsenic in utero is associated with various types of DNA damage and micronuclei in newborns: a birth cohort study. Environmental Health, 2019, 18, 51.	1.7	31
25	Editorial. Environmental Geochemistry and Health, 2019, 41, 323-323.	1.8	Ο
26	Effect of membrane property and feed water organic matter quality on long-term performance of the gravity-driven membrane filtration process. Environmental Science and Pollution Research, 2019, 26, 1152-1162.	2.7	25
27	Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea. Environmental Geochemistry and Health, 2019, 41, 469-480.	1.8	11
28	Reductive dissolution and sequestration of arsenic by microbial iron and thiosulfate reduction. Environmental Geochemistry and Health, 2019, 41, 461-467.	1.8	8
29	Distribution and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in sediments of different tropical water ecosystems in Niger Delta, Nigeria. Environmental Earth Sciences, 2018, 77, 1.	1.3	23
30	The enhancement and inhibition of mercury reduction by natural organic matter in the presence of Shewanella oneidensis MR-1. Chemosphere, 2018, 194, 515-522.	4.2	27
31	Removal of As(V) and Sb(V) in aqueous solution by Mg/Al-layered double hydroxide-incorporated polyethersulfone polymer beads (PES-LDH). Environmental Geochemistry and Health, 2018, 40, 2119-2129.	1.8	16
32	Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. Journal of Environmental Sciences, 2018, 66, 50-60.	3.2	92
33	Removal of As(V) and Sb(V) in water using magnetic nanoparticle-supported layered double hydroxide nanocomposites. Journal of Geochemical Exploration, 2018, 184, 247-254.	1.5	35
34	Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater. Chemosphere, 2018, 191, 729-737.	4.2	33
35	Comparative sorption isotherms and removal studies for Pb(II) by physical and thermochemical modification of low-cost agro-wastes from Tanzania. Chemosphere, 2018, 195, 135-145.	4.2	70
36	Enhanced adsorption of arsenate and antimonate by calcined Mg/Al layered double hydroxide: Investigation of comparative adsorption mechanism by surface characterization. Chemosphere, 2018, 211, 903-911.	4.2	59

#	Article	IF	CITATIONS
37	Characterization of silver nanoparticle aggregates using single particle-inductively coupled plasma-mass spectrometry (spICP-MS). Chemosphere, 2017, 171, 468-475.	4.2	17
38	Defining the copper binding aptamotif and aptamer integrated recovery platform (AIRP). Nanoscale, 2017, 9, 2883-2894.	2.8	35
39	Single and combined effects of phosphate, silicate, and natural organic matter on arsenic removal from soft and hard groundwater using ferric chloride. Hydrogeology Journal, 2017, 25, 1183-1190.	0.9	5
40	Mechanisms Underlying Latent Disease Risk Associated with Early-Life Arsenic Exposure: Current Research Trends and Scientific Gaps. Environmental Health Perspectives, 2016, 124, 170-175.	2.8	55
41	Geochemical Distribution of Trace Elements in Groundwater from the North Mara Large cale Gold Mining Area of Tanzania. Ground Water Monitoring and Remediation, 2016, 36, 83-93.	0.6	15
42	Fluxes of nutrients and trace metals across the sediment-water interface controlled by sediment-capping agents: bentonite and sand. Environmental Monitoring and Assessment, 2016, 188, 566.	1.3	12
43	Dietary exposure and human risk assessment of phthalate esters based on total diet study in Cambodia. Environmental Research, 2016, 150, 423-430.	3.7	34
44	Selenate removal by zero-valent iron in oxic condition: the role of Fe(II) and selenate removal mechanism. Environmental Science and Pollution Research, 2016, 23, 1081-1090.	2.7	33
45	Current status of arsenic exposure and social implication in the Mekong River basin of Cambodia. Environmental Geochemistry and Health, 2016, 38, 763-772.	1.8	8
46	Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna. Chemosphere, 2016, 143, 99-105.	4.2	57
47	Ecological assessment of coal mine and metal mine drainage in South Korea using Daphnia magna bioassay. SpringerPlus, 2015, 4, 518.	1.2	12
48	Enhanced Arsenate Removal Performance in Aqueous Solution by Yttrium-Based Adsorbents. International Journal of Environmental Research and Public Health, 2015, 12, 13523-13541.	1.2	24
49	Field assessment of arsenic immobilization in soil amended with iron rich acid mine drainage sludge. Journal of Cleaner Production, 2015, 108, 1073-1080.	4.6	49
50	Simultaneous photooxidation and sorptive removal of As(III) by TiO2 supported layered double hydroxide. Journal of Environmental Management, 2015, 161, 228-236.	3.8	22
51	Humic Acid from Livestock Dung: Ecofriendly Corrosion Inhibitor for 3SR Aluminum Alloy in Alkaline Medium. Chemical Engineering Communications, 2015, 202, 206-216.	1.5	15
52	Flavobacterium arsenitoxidans sp. nov., an arsenite-oxidizing bacterium from Thai soil. Antonie Van Leeuwenhoek, 2014, 106, 1239-1246.	0.7	18
53	Kriging interpolation method for laser induced breakdown spectroscopy (LIBS) analysis of Zn in various soils. Journal of Analytical Atomic Spectrometry, 2014, 29, 76-84.	1.6	21
54	Environmental arsenic epidemiology in the Mekong river basin of Cambodia. Environmental Research, 2014, 135, 37-41.	3.7	4

#	Article	IF	CITATIONS
55	Human health risk assessment for ingestion exposure to groundwater contaminated by naturally occurring mixtures of toxic heavy metals in the Lao PDR. Environmental Monitoring and Assessment, 2014, 186, 4905-4923.	1.3	40
56	Assessing arsenic intake from groundwater and rice by residents in Prey Veng province, Cambodia. Environmental Pollution, 2014, 185, 84-89.	3.7	21
57	Fundamentals of electrokinetics. Arsenic in the Environment, 2014, , 87-113.	0.0	1
58	The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil. Environmental Geochemistry and Health, 2013, 35, 727-733.	1.8	29
59	Simultaneous stabilization of arsenic, lead, and copper in contaminated soil using mixed waste resources. Environmental Earth Sciences, 2013, 69, 1813-1820.	1.3	22
60	Arsenic contamination in the food chain and its risk assessment of populations residing in the Mekong River basin of Cambodia. Journal of Hazardous Materials, 2013, 262, 1064-1071.	6.5	66
61	Assessing mixed trace elements in groundwater and their health risk of residents living in the Mekong River basin of Cambodia. Environmental Pollution, 2013, 182, 111-119.	3.7	45
62	Arsenic immobilization in water and soil using acid mine drainage sludge. Applied Geochemistry, 2013, 35, 1-6.	1.4	22
63	Bioaccumulation and the soil factors affecting the uptake of arsenic in earthworm, Eisenia fetida. Environmental Science and Pollution Research, 2013, 20, 8326-8333.	2.7	17
64	Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS). Journal of Hazardous Materials, 2013, 263, 754-760.	6.5	67
65	Arsenic concentration in rice, fish, meat and vegetables in Cambodia: a preliminary risk assessment. Environmental Geochemistry and Health, 2013, 35, 745-755.	1.8	37
66	Arsenic ecotoxicology: The interface between geosphere, hydrosphere and biosphere. Journal of Hazardous Materials, 2013, 262, 883-886.	6.5	18
67	Dietary exposure and risk assessment of mercury via total diet study in Cambodia. Chemosphere, 2013, 92, 143-149.	4.2	58
68	The difference of diffusion coefficients in water for arsenic compounds at various pH and its dominant factors implied by molecular simulations. Geochimica Et Cosmochimica Acta, 2013, 105, 360-371.	1.6	47
69	Condition factor, hydrocarbons and bacterial burdens of shellfishes from mudflats in the Qua Iboe Estuary, Nigeria. Geosystem Engineering, 2013, 16, 156-164.	0.7	1
70	Arsenic: from toxic compound to medical treatment. Geosystem Engineering, 2013, 16, 139-145.	0.7	0
71	Toxicokinetics and Biotransformation of As(III) and As(V) in <i>Eisenia fetida</i> . Human and Ecological Risk Assessment (HERA), 2013, 19, 792-806.	1.7	14
72	Study on adsorption/desorption of As by mine sludge depending on pH and natural organic matter. Geosystem Engineering, 2013, 16, 191-199.	0.7	4

#	Article	IF	CITATIONS
73	Are existing drinking water sources safe from As contamination in Hanam province, Vietnam?. Geochemical Journal, 2013, 47, 363-368.	0.5	2
74	The role of pH in metal ion removal using coir dust and its modified extract resins. Geosystem Engineering, 2012, 15, 269-279.	0.7	2
75	Determination of lead in soil at a historical mining and smelting site using laser-induced breakdown spectroscopy. Environmental Technology (United Kingdom), 2012, 33, 2177-2184.	1.2	15
76	Nanoparticles in the environment: stability and toxicity. Reviews on Environmental Health, 2012, 27, 175-9.	1.1	15
77	Petroleum hydrocarbons and trace metal loads in the mangrove oyster (<i>Crassostrea) Tj ETQq1 1 0.784314 rgE 2012, 15, 50-59.</i>	3T /Overloo 0.7	ck 10 Tf 50 3 6
78	The 2010 Korean soil preservation act: Will stabilization techniques still be feasible?. Geochemical Journal, 2012, 46, e17-e19.	0.5	8
79	Comparative study of simultaneous removal of As, Cu, and Pb using different combinations of electrokinetics with bioleaching by Acidithiobacillus ferrooxidans. Water Research, 2012, 46, 5591-5599.	5.3	42
80	Arsenic Adsorption by Fe Loaded on RH-MCM-41 Synthesized from Rice Husk Silica. Journal of Environmental Engineering, ASCE, 2012, 138, 119-128.	0.7	13
81	Anaerobic, Nitrate-Dependent Oxidation of Pyrite Nanoparticles by <i>Thiobacillus denitrificans</i> . Environmental Science & Technology, 2012, 46, 2095-2101.	4.6	131
82	Phytoremediation of soil contaminated with heavy metals using <i>Brassica napus</i> . Geosystem Engineering, 2012, 15, 10-18.	0.7	33
83	Optimization of As(V) adsorption on Fe-RH-MCM-41-immobilized GAC using Box–Behnken Design: Effects of pH, loadings, and initial concentrations. Applied Geochemistry, 2012, 27, 1027-1034.	1.4	43
84	Arsenic stabilization in mine tailings using nano-sized magnetite and zero valent iron with the enhancement of mobility by surface coating. Journal of Geochemical Exploration, 2012, 113, 124-129.	1.5	56
85	Comamonas terrae sp. nov., an arsenite-oxidizing bacterium isolated from agricultural soil in Thailand. Journal of General and Applied Microbiology, 2012, 58, 245-251.	0.4	26
86	Stabilization of the As-contaminated soil from the metal mining areas in Korea. Environmental Geochemistry and Health, 2012, 34, 143-149.	1.8	24
87	Ex-situ field application of electrokinetics for remediation of shooting-range soil. Environmental Geochemistry and Health, 2012, 34, 151-159.	1.8	10
88	Preface. Environmental Geochemistry and Health, 2012, 34, 3-3.	1.8	1
89	Bioconversion of Crude Oil Production Sludge into Soil Conditioner Using Sawdust as Organic Amendment. Geosystem Engineering, 2011, 14, 51-58.	0.7	4

Sustainable Development in the Mining Sector and Its Evaluation Using Fuzzy AHP (Analytic Hierarchy) Tj ETQq0 0 8 rgBT /Overlock 10 T

#	Article	IF	CITATIONS
91	Review: Source, Fate, Toxicological Effect and Removal Technology of Pharmaceuticals in the Environment. Geosystem Engineering, 2011, 14, 35-42.	0.7	5
92	Community exposure to arsenic in the Mekong river delta, Southern Vietnam. Journal of Environmental Monitoring, 2011, 13, 2025.	2.1	30
93	Development of Water Quality Indexes to Identify Pollutants in Vietnam's Surface Water. Journal of Environmental Engineering, ASCE, 2011, 137, 273-283.	0.7	47
94	Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water Research, 2011, 45, 5535-5544.	5.3	115
95	Daily intake and human risk assessment of organochlorine pesticides (OCPs) based on Cambodian market basket data. Journal of Hazardous Materials, 2011, 192, 1441-1449.	6.5	102
96	Implications of rainfall variability for seasonality and climate-induced risks concerning surface water quality in East Asia. Journal of Hydrology, 2011, 400, 323-332.	2.3	41
97	Contamination by arsenic and other trace elements of tube-well water along the Mekong River in Lao PDR. Environmental Pollution, 2011, 159, 567-576.	3.7	49
98	Surveillance on chronic arsenic exposure in the Mekong River basin of Cambodia using different biomarkers. International Journal of Hygiene and Environmental Health, 2011, 215, 51-58.	2.1	19
99	Arsenic geochemistry of groundwater in Southeast Asia. Frontiers of Medicine, 2011, 5, 420-433.	1.5	92
100	Geochemical distribution of trace element concentrations in the vicinity of Boroo gold mine, Selenge Province, Mongolia. Environmental Geochemistry and Health, 2011, 33, 57-69.	1.8	42
101	Removal of arsenate from water by adsorbents: a comparative case study. Environmental Geochemistry and Health, 2011, 33, 133-141.	1.8	17
102	Preface: a special issue on mine reclamation and suitable management for heavy metals. Environmental Geochemistry and Health, 2011, 33, 1-2.	1.8	2
103	A feasibility study on bioelectrokinetics for the removal of heavy metals from tailing soil. Environmental Geochemistry and Health, 2011, 33, 3-11.	1.8	17
104	Natural attenuation of arsenic in the wetland system around abandoned mining area. Environmental Geochemistry and Health, 2011, 33, 71-80.	1.8	12
105	Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems. Journal of Hazardous Materials, 2011, 186, 855-862.	6.5	84
106	Stabilization of arsenic-contaminated mine tailings using natural and calcined oyster shells. Environmental Earth Sciences, 2011, 64, 597-605.	1.3	39
107	Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion. Applied Catalysis B: Environmental, 2011, 104, 185-192.	10.8	135
108	Arsenic geochemistry and human health in South East Asia. Reviews on Environmental Health, 2011, 26, 71-78.	1.1	143

#	Article	IF	CITATIONS
109	Application of Laser Based Spectroscopic Monitoring into Soil Remediation Process of PAH-Contaminated Soil. Geosystem Engineering, 2011, 14, 15-22.	0.7	4
110	Application of Waste Resources for the Stabilization of Heavy Metals (Pb, Cu) in Firing Range Soils. Daehan Hwan'gyeong Gonghag Hoeji, 2011, 33, 71-76.	0.4	4
111	An Alternate Method for Fourier Transform Infrared (FTIR) Spectroscopic Determination of Soil Nitrate Using Derivative Analysis and Sample Treatments. Water, Air, and Soil Pollution, 2010, 206, 129-137.	1.1	19
112	Arsenic in an As-contaminated abandoned mine was mobilized from fern-rhizobium to frond-bacteria via the ars gene. Biotechnology and Bioprocess Engineering, 2010, 15, 862-873.	1.4	3
113	Geochemical and microbial effects on the mobilization of arsenic in mine tailing soils. Environmental Geochemistry and Health, 2010, 32, 31-44.	1.8	27
114	Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environmental Geochemistry and Health, 2010, 32, 95-105.	1.8	60
115	Anthropogenic influence on surface water quality of the Nhue and Day sub-river systems in Vietnam. Environmental Geochemistry and Health, 2010, 32, 227-236.	1.8	25
116	Synthesis and characterization of Fe-MCM-41 from rice husk silica by hydrothermal technique for arsenate adsorption. Environmental Geochemistry and Health, 2010, 32, 261-266.	1.8	13
117	Preface. Environmental Geochemistry and Health, 2010, 32, 259-260.	1.8	0
118	Arsenic in groundwater and sediment in the Mekong River delta, Vietnam. Environmental Pollution, 2010, 158, 2648-2658.	3.7	100
119	Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. Journal of Environmental Management, 2010, 91, 2322-2328.	3.8	85
120	Metal content variation in wastewater and biosludge from Bangkok's central wastewater treatment plants. Microchemical Journal, 2010, 95, 326-332.	2.3	48
121	Integrative ecological health assessments of an acid mine stream and in situ pilot tests for wastewater treatments. Ecological Engineering, 2010, 36, 653-663.	1.6	25
122	Sources and Fate of As in the Environment. Geosystem Engineering, 2010, 13, 35-42.	0.7	29
123	Trace Elements in Ground and Packaged Water in Akwa Ibom State, Nigeria. Geosystem Engineering, 2010, 13, 57-68.	0.7	1
124	Analysis of variation and relation of climate, hydrology and water quality in the lower Mekong River. Water Science and Technology, 2010, 62, 1587-1594.	1.2	15
125	Spectroscopic Interpretation of PAH-Spectra in Minerals and Its Possible Application to Soil Monitoring. Sensors, 2010, 10, 3868-3881.	2.1	7
126	Heavy Metal Removal from Shooting Range Soil by Hybrid Electrokinetics with Bacteria and Enhancing Agents. Environmental Science & Technology, 2010, 44, 9482-9487.	4.6	71

#	Article	IF	CITATIONS
127	Lead (Pb) Contamination of a Historical Mining and Smelting Site in Europe: Fractionation and Human Bioavailability. Geosystem Engineering, 2010, 13, 21-24.	0.7	5
128	Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Research, 2010, 44, 5777-5788.	5.3	149
129	Arsenic levels in human hair, Kandal Province, Cambodia: The influences of groundwater arsenic, consumption period, age and gender. Applied Geochemistry, 2010, 25, 81-90.	1.4	35
130	Acid Rain Impact on Phytoavailability of Heavy Metals in Soils. Geosystem Engineering, 2010, 13, 133-138.	0.7	14
131	Effect of Graded Doses of Heavy Metals on the Radial Growth Rate of Hyphomycetous Fungi from Mangrove Sediments of the Qua Iboe Estuary, Nigeria. Geosystem Engineering, 2010, 13, 139-146.	0.7	3
132	Decadal and seasonal scale changes of an artificial lake environment after blocking tidal flows in the Yeongsan Estuary region, Korea. Science of the Total Environment, 2009, 407, 6063-6072.	3.9	31
133	Isolation and characterization of arsenic resistant bacteria from tannery wastes and agricultural soils in Thailand. Annals of Microbiology, 2009, 59, 649-656.	1.1	28
134	Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 1105-1110.	1.5	56
135	Arsenite oxidation by Alcaligenes sp. strain RS-19 isolated from arsenic-contaminated mines in the Republic of Korea. Environmental Geochemistry and Health, 2009, 31, 109-117.	1.8	23
136	Qualitative analysis and mapping of heavy metals in an abandoned Au–Ag mine area using NIR spectroscopy. Environmental Geology, 2009, 58, 477-482.	1.2	69
137	Lysosomal membrane response of earthworm, <i>Eisenia fetida</i> , to arsenic contamination in soils. Environmental Toxicology, 2009, 24, 369-376.	2.1	20
138	Perchlorate adsorption and desorption on activated carbon and anion exchange resin. Journal of Hazardous Materials, 2009, 164, 87-94.	6.5	111
139	Performance and mechanism of arsenic removal from water by a nanofiltration membrane. Desalination, 2009, 245, 82-94.	4.0	115
140	Heavy metal and arsenic accumulating fern species as potential ecological indicators in As-contaminated abandoned mines. Ecological Indicators, 2009, 9, 1275-1279.	2.6	49
141	Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal Province of Cambodia. Environment International, 2009, 35, 455-460.	4.8	77
142	Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam. Environment International, 2009, 35, 466-472.	4.8	156
143	Enhancement of arsenic mobility by indigenous bacteria from mine tailings as response to organic supply. Environment International, 2009, 35, 496-501.	4.8	15
144	Arsenic geochemistry, transport mechanism in the soil–plant system, human and animal health issues. Environment International, 2009, 35, 453-454.	4.8	29

#	Article	IF	CITATIONS
145	Effect of arsenic on p53 mutation and occurrence of teratogenic salamanders: Their potential as ecological indicators for arsenic contamination. Chemosphere, 2009, 75, 948-954.	4.2	8
146	A Novel Combination of Anaerobic Bioleaching and Electrokinetics for Arsenic Removal from Mine Tailing Soil. Environmental Science & amp; Technology, 2009, 43, 9354-9360.	4.6	40
147	Evaluation on the Feasibility of Microbially Enhanced Electrokinetic Removal of Multiple Heavy Metals from Tailing Soil. Separation Science and Technology, 2009, 44, 2322-2340.	1.3	8
148	Factors affecting metal exchange between sediment and water in an estuarine reservoir: A spatial and seasonal observation. Journal of Environmental Monitoring, 2009, 11, 2058.	2.1	9
149	Arsenic Removal from Vietnamese Groundwater Using the Arsenic-Binding DNA Aptamer. Environmental Science & Technology, 2009, 43, 9335-9340.	4.6	147
150	Application of arsenic field test kit to stream sediment: effect of fine particles and chemical extraction. Chemical Speciation and Bioavailability, 2009, 21, 49-57.	2.0	2
151	Isolation and characterization of arsenite-oxidizing bacteria from arsenic-contaminated soils in Thailand. World Journal of Microbiology and Biotechnology, 2008, 24, 3091-3096.	1.7	27
152	The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold–silver mines in the Republic of Korea. Applied Microbiology and Biotechnology, 2008, 80, 155-165.	1.7	67
153	Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sensing of Environment, 2008, 112, 3222-3233.	4.6	286
154	Arsenic accumulation and toxicity in the earthworm <i>Eisenia fetida</i> affected by chloride and phosphate. Environmental Toxicology and Chemistry, 2008, 27, 2488-2495.	2.2	21
155	Biogeochemical cyclic activity of bacterial arsB in arsenic-contaminated mines. Journal of Environmental Sciences, 2008, 20, 1348-1355.	3.2	12
156	Arsenic and manganese in tube well waters of Prey Veng and Kandal Provinces, Cambodia. Applied Geochemistry, 2008, 23, 1086-1093.	1.4	49
157	The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environment International, 2008, 34, 860-866.	4.8	161
158	Evaluation of human exposure to arsenic due to rice ingestion in the vicinity of abandoned Myungbong Au–Ag mine site, Korea. Journal of Geochemical Exploration, 2008, 96, 231-235.	1.5	79
159	Rhamnolipid Morphology and Phenanthrene Solubility at Different pH Values. Journal of Environmental Quality, 2008, 37, 509-514.	1.0	34
160	Progress in Earthworm Ecotoxicology. , 2008, , 248-258.		9
161	Speciation of Arsenic from Soil Organic Matter in Abandoned Gold and Silver Mines, Korea. Journal of Applied Biological Chemistry, 2008, 51, 36-44.	0.2	1
162	Effect of Biosurfactant Addition on the Biodegradation of Phenanthrene in Soil-water System. Environmental Engineering Research, 2008, 13, 8-13.	1.5	3

#	Article	IF	CITATIONS
163	Earthworm Toxicity Test for the Monitoring Arsenic and Heavy Metal-Containing Mine Tailings. Environmental Engineering Science, 2007, 24, 1257-1265.	0.8	15
164	Monitoring of environmental phenolic endocrine disrupting compounds in treatment effluents and river waters, Korea. Talanta, 2007, 73, 674-683.	2.9	46
165	Organic Acid-Dependent Iron Mineral Formation by a Newly Isolated Iron-Reducing Bacterium,Shewanellasp. HN-41. Geomicrobiology Journal, 2007, 24, 31-41.	1.0	48
166	Arsenic Removal by a Colloidal Iron Oxide Coated Sand. Journal of Environmental Engineering, ASCE, 2007, 133, 891-898.	0.7	21
167	Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochemical Engineering Journal, 2007, 36, 54-58.	1.8	142
168	Effect of contact order on the adsorption of inorganic arsenic species onto hematite in the presence of humic acid. Journal of Hazardous Materials, 2007, 141, 53-60.	6.5	42
169	DNA sequence homology analysis ofars genes in arsenic-resistant bacteria. Biotechnology and Bioprocess Engineering, 2007, 12, 380-389.	1.4	4
170	Effect of scale-up and seasonal variation on biokinetics in the enhanced bioremediation of petroleum hydrocarbon-contaminated soil. Biotechnology and Bioprocess Engineering, 2007, 12, 531-541.	1.4	5
171	Enhancement of As(V) adsorption onto activated sludge by methylation treatment. Environmental Geochemistry and Health, 2007, 29, 313-318.	1.8	8
172	Ecological Health Assessment and Remediation of the Stream Impacted by Acid Mine Drainage of the Gwangyang Mine Area. Environmental Monitoring and Assessment, 2007, 129, 79-85.	1.3	8
173	Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines. Journal of Microbiology and Biotechnology, 2007, 17, 812-21.	0.9	27
174	Monitoring Metal Ion Binding in Single-LayerPseudomonas aeruginosaBiofilms Using ATRâ^'IR Spectroscopy. Langmuir, 2006, 22, 286-291.	1.6	44
175	Adsorption (AsIII,V) and oxidation (AsIII) of arsenic by pedogenic Fe–Mn nodules. Geoderma, 2006, 136, 566-572.	2.3	36
176	Effect of hardness on acute toxicity of metal mixtures using Daphnia magna: Prediction of acid mine drainage toxicity. Journal of Hazardous Materials, 2006, 138, 16-21.	6.5	84
177	Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization–biodegradation process. Journal of Hazardous Materials, 2006, 137, 1831-1837.	6.5	96
178	Human Risk Assessment for Heavy Metals and as Contamination in the Abandoned Metal Mine Areas, Korea. Environmental Monitoring and Assessment, 2006, 119, 233-244.	1.3	113
179	Remediation of soil contaminated with arsenic, zinc, and nickel by pilot-scale soil washing. Environmental Progress, 2006, 25, 39-48.	0.8	33
180	Adsorption properties of soil humic and fulvic acids by hematite. Chemical Speciation and Bioavailability, 2005, 17, 41-48.	2.0	21

#	Article	IF	CITATIONS
181	Enhanced electrokinetic extraction of heavy metals from soils assisted by ion exchange membranes. Journal of Hazardous Materials, 2005, 118, 93-102.	6.5	99
182	Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. Journal of Hazardous Materials, 2005, 127, 1-13.	6.5	98
183	EARTHWORM TOXICITY DURING CHEMICAL OXIDATION OF DIESEL-CONTAMINATED SAND. Environmental Toxicology and Chemistry, 2005, 24, 1924.	2.2	30
184	TOXIC EFFECT OF BIOSURFACTANT ADDITION ON THE BIODEGRADATION OF PHENANTHRENE. Environmental Toxicology and Chemistry, 2005, 24, 2768.	2.2	40
185	Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea. Environmental Geochemistry and Health, 2005, 27, 147-157.	1.8	56
186	Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea. Environmental Geochemistry and Health, 2005, 27, 193-203.	1.8	90
187	Concentrations of arsenic and heavy metals in vegetation at two abandoned mine tailings in South Korea. Environmental Geochemistry and Health, 2005, 27, 109-119.	1.8	45
188	Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environmental Geochemistry and Health, 2005, 27, 185-191.	1.8	154
189	The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment. Environmental Geochemistry and Health, 2005, 27, 159-168.	1.8	25
190	Evaluation of Electrokinetic Remediation of Arsenic-contaminated Soils. Environmental Geochemistry and Health, 2005, 27, 443-453.	1.8	77
191	Uranium Accumulation of Crop Plants Enhanced by Citric Acid. Environmental Geochemistry and Health, 2005, 27, 529-538.	1.8	70
192	Microbial removal of uranium in uranium-bearing black shale. Chemosphere, 2005, 59, 147-154.	4.2	36
193	Sorption behaviors of heavy metals in SAT (soil aquifer treatment) system. Water Science and Technology, 2004, 50, 263-268.	1.2	6
194	A Biosurfactant-Enhanced Soil Flushing for the Removal of Phenanthrene and Diesel in Sand. Environmental Geochemistry and Health, 2004, 26, 5-11.	1.8	22
195	Remediation Process Monitoring of PAH-Contaminated Soils using Laser-Induced Fluorescence. Environmental Monitoring and Assessment, 2004, 92, 179-191.	1.3	9
196	Removal of arsenic in tailings by soil flushing and the remediation process monitoring. Environmental Geochemistry and Health, 2004, 26, 403-409.	1.8	15
197	Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene. Applied Microbiology and Biotechnology, 2004, 65, 336-43.	1.7	46
198	Arsenic speciation and sorption kinetics in the As–hematite–humic acid system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 234, 43-50.	2.3	96

#	Article	IF	CITATIONS
199	Monitoring of Endocrine Disrupting Compounds in Aquatic Environment. Geosystem Engineering, 2004, 7, 1-11.	0.7	0
200	Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere, 2004, 56, 141-147.	4.2	257
201	Title is missing!. Water, Air, and Soil Pollution, 2003, 150, 135-162.	1.1	40
202	Numerical analysis for electrokinetic soil processing enhanced by chemical conditioning of the electrode reservoirs. Journal of Hazardous Materials, 2003, 99, 71-88.	6.5	20
203	Stabilization of Available Arsenic in Highly Contaminated Mine Tailings Using Iron. Environmental Science & Technology, 2003, 37, 189-195.	4.6	166
204	Electrokinetic Processing for the Removal of Radionuclides in Soils. Separation Science and Technology, 2003, 38, 2137-2163.	1.3	16
205	Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems. Water Research, 2003, 37, 2478-2488.	5.3	96
206	Chemical and Ecotoxicity Assessment of PAH-Contaminated Soils Remediated by Enhanced Soil Flushing. Environmental Engineering Science, 2003, 20, 197-206.	0.8	13
207	Arsenic contamination of soils and sediments from tailings in the vicinity of Myungbong Au mine, Korea. Chemical Speciation and Bioavailability, 2003, 15, 67-74.	2.0	29
208	Evaluation of Electrokinetic Removal of Heavy Metals from Tailing Soils. Journal of Environmental Engineering, ASCE, 2002, 128, 705-715.	0.7	64
209	Pilot scale study on the ex situ electrokinetic removal of heavy metals from municipal wastewater sludges. Water Research, 2002, 36, 4765-4774.	5.3	92
210	Ozonation of diesel fuel in unsaturated porous media. Applied Geochemistry, 2002, 17, 1165-1170.	1.4	30
211	Assessment of As and Heavy Metal Contamination in the Vicinity of Duckum Au-Ag Mine, Korea. Environmental Geochemistry and Health, 2002, 24, 213-225.	1.8	86
212	Geochemical and Geophysical Monitoring of Salinewater Intrusion in Korean Paddy Fields. Environmental Geochemistry and Health, 2002, 24, 277-291.	1.8	21
213	Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Applied Geochemistry, 2001, 16, 1419-1428.	1.4	165
214	Application of multivariate statistical analysis and a geographic information system to trace element contamination in the Chungnam Coal Mine area, Korea. Applied Geochemistry, 2001, 16, 1455-1464.	1.4	10
215	Characteristics of tailings from the closed metal mines as potential contamination source in South Korea. Environmental Geology, 2001, 41, 358-364.	1.2	42
216	Monitoring of electrokinetic removal of heavy metals in tailing-soils using sequential extraction analysis. Journal of Hazardous Materials, 2001, 85, 195-211.	6.5	67

#	Article	IF	CITATIONS
217	Ecotoxicity monitoring of hydrocarbon-contaminated soil using earthworm (Eisenia foetida). , 2001, 70, 93-103.		15
218	Removal of Heavy Metals from Soils using Enhanced Electrokinetic Soil Processing. Water, Air, and Soil Pollution, 2001, 125, 259-272.	1.1	103
219	Enhanced Electrokinetic Soil Remediation for Removal of Organic Contaminants. Environmental Technology (United Kingdom), 2000, 21, 417-426.	1.2	40
220	Enrichment of potentially toxic elements in areas underlain by black shales and slates in Korea. Environmental Geochemistry and Health, 1998, 20, 135-147.	1.8	48
221	Heavy metal contamination in dusts and stream sediments in the Taejon area, Korea. Journal of Geochemical Exploration, 1998, 64, 409-419.	1.5	112
222	Migration and dispersion of trace elements in the rock–soil–plant system in areas underlain by black shales and slates of the Okchon Zone, Korea. Journal of Geochemical Exploration, 1998, 65, 61-78.	1.5	66
223	A Study on Distribution Pattern of Trace Elements in Chungnam Coal Mine Area Using Factor Analysis and GIS. Geosystem Engineering, 1998, 1, 84-94.	0.7	3
224	Copper Removal from Kaolinite Using Enhanced Electrokinetic Soil Processing. Geosystem Engineering, 1998, 1, 35-45.	0.7	1
225	The Environmental Impact of Gold Mines in the Yugu-Kwangcheon Au-Ag Metallogenic Province, Republic of Korea. Environmental Technology (United Kingdom), 1998, 19, 291-298.	1.2	43
226	The occurrence and dispersion of potentially toxic elements in areas covered with black shales and slates in Korea. Applied Geochemistry, 1996, 11, 69-76.	1.4	59
227	Metal contamination of soils and dusts in Seoul metropolitan city, Korea. Environmental Geochemistry and Health, 1995, 17, 139-146.	1.8	89
228	Influence of uraniferous black shales on cadmium, molybdenum and selenium in soils and crop plants in the Deog-Pyoun-g area of Korea. Environmental Geochemistry and Health, 1993, 15, 119-133.	1.8	50
229	Influence of Ordovician uraniferous black shales on the trace element composition of soils and food crops, Korea. Applied Geochemistry, 1993, 8, 249-255.	1.4	38