
Walter J Storkus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1898024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor-Derived Microvesicles Promote Regulatory T Cell Expansion and Induce Apoptosis in Tumor-Reactive Activated CD8+ T Lymphocytes. Journal of Immunology, 2009, 183, 3720-3730.	0.4	479
2	α-Type-1 Polarized Dendritic Cells. Cancer Research, 2004, 64, 5934-5937.	0.4	449
3	Dendritic Cells Mediate NK Cell Help for Th1 and CTL Responses: Two-Signal Requirement for the Induction of NK Cell Helper Function. Journal of Immunology, 2003, 171, 2366-2373.	0.4	326
4	Disease-associated Bias in T Helper Type 1 (Th1)/Th2 CD4+ T Cell Responses Against MAGE-6 in HLA-DRB1*0401+ Patients With Renal Cell Carcinoma or Melanoma. Journal of Experimental Medicine, 2002, 196, 619-628.	4.2	290
5	Immunopolarization of CD4+ and CD8+ T Cells to Type-1–Like is Associated with Melanocyte Loss in Human Vitiligo. Laboratory Investigation, 2003, 83, 683-695.	1.7	212
6	Identification of T-Cell Epitopes. Journal of Immunotherapy, 1993, 14, 94-103.	1.2	210
7	FLT3 Ligand Induces the Generation of Functionally Active Dendritic Cells in Mice. Cellular Immunology, 1997, 179, 174-184.	1.4	199
8	STING Agonists as Cancer Therapeutics. Cancers, 2021, 13, 2695.	1.7	181
9	Complementary Dendritic Cell–activating Function of CD8+ and CD4+ T Cells. Journal of Experimental Medicine, 2002, 195, 473-483.	4.2	167
10	Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. Journal of Translational Medicine, 2007, 5, 10.	1.8	161
11	Interleukin-12 and B7.1 co-stimulation cooperate in the induction of effective antitumor immunity and therapy of established tumors. European Journal of Immunology, 1996, 26, 1335-1341.	1.6	135
12	Construction and Characterization of Retroviral Vectors Expressing Biologically Active Human Interleukin-12. Human Gene Therapy, 1994, 5, 1493-1506.	1.4	131
13	Mature dendritic cells pulsed with freeze–thaw cell lysates define an effective in vitro vaccine designed to elicit EBV-specific CD4+ and CD8+ T lymphocyte responses. Blood, 2000, 96, 1857-1864.	0.6	129
14	Innate Direct Anticancer Effector Function of Human Immature Dendritic Cells. II. Role of TNF, Lymphotoxin-α1β2, Fas Ligand, and TNF-Related Apoptosis-Inducing Ligand. Journal of Immunology, 2002, 168, 1831-1839.	0.4	128
15	Sunitinib facilitates the activation and recruitment of therapeutic antiâ€ŧumor immunity in concert with specific vaccination. International Journal of Cancer, 2011, 129, 2158-2170.	2.3	127
16	EphA2 as a Glioma-Associated Antigen: A Novel Target for Glioma Vaccines. Neoplasia, 2005, 7, 717-722.	2.3	126
17	Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or "self― antigens induce antitumor immunityin vivo. European Journal of Immunology, 1997, 27, 2702-2707.	1.6	119
18	Disease stage variation in CD4+ and CD8+ T-cell reactivity to the receptor tyrosine kinase EphA2 in patients with renal cell carcinoma. Cancer Research, 2003, 63, 4481-9.	0.4	110

#	Article	IF	CITATIONS
19	Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clinical Cancer Research, 2002, 8, 1787-93.	3.2	106
20	Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Molecular Cancer, 2021, 20, 171.	7.9	106
21	Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Research, 2003, 63, 6378-86.	0.4	105
22	ldentification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor alpha2 chain. Clinical Cancer Research, 2002, 8, 2851-5.	3.2	99
23	Helper role of NK cells during the induction of anticancer responses by dendritic cells. Molecular Immunology, 2005, 42, 535-539.	1.0	98
24	IL-36Î ³ Transforms the Tumor Microenvironment and Promotes Type 1 Lymphocyte-Mediated Antitumor Immune Responses. Cancer Cell, 2015, 28, 296-306.	7.7	93
25	DNA Immunization Targeting the Skin: Molecular Control of Adaptive Immunity. Journal of Investigative Dermatology, 1998, 111, 183-188.	0.3	91
26	Evaluation of the Modified ELISPOT Assay for Gamma Interferon Production in Cancer Patients Receiving Antitumor Vaccines. Vaccine Journal, 2000, 7, 145-154.	2.6	88
27	IL-12-Engineered Dendritic Cells Serve as Effective Tumor Vaccine Adjuvants in Vivo. Annals of the New York Academy of Sciences, 1996, 795, 284-293.	1.8	85
28	Adoptive Transfer of Type 1 CTL Mediates Effective Anti–Central Nervous System Tumor Response: Critical Roles of IFN-Inducible Protein-10. Cancer Research, 2006, 66, 4478-4487.	0.4	84
29	Polarized Type-1 Dendritic Cells (DC1) Producing High Levels of IL-12 Family Members Rescue Patient TH1-type Antimelanoma CD4+ T cell Responses In Vitro. Journal of Immunotherapy, 2007, 30, 75-82.	1.2	81
30	Innate Direct Anticancer Effector Function of Human Immature Dendritic Cells. I. Involvement of an Apoptosis-Inducing Pathway. Journal of Immunology, 2002, 168, 1823-1830.	0.4	80
31	Host immune response in renal cell cancer: Interleukin-4 (IL-4) and IL-10 mRNA are frequently detected in freshly collected tumor-infiltrating lymphocytes. Cancer Immunology, Immunotherapy, 1995, 41, 111-121.	2.0	71
32	Flow-cytometric determination of peptide-class I complex formation identification of p53 peptides that bind to HLA-A2. Human Immunology, 1994, 39, 79-86.	1.2	70
33	Cytokine Gene Therapy of Cancer Using Interleukin-12: Murine and Clinical Trials. Annals of the New York Academy of Sciences, 1996, 795, 440-454.	1.8	70
34	Induction of tumor antigen-specific immunity using plasmid DNA immunization in mice. Cancer Gene Therapy, 1999, 6, 73-80.	2.2	69
35	Effect of Renal Cell Carcinomas on the Development of Type 1 T-Cell Responses. Clinical Cancer Research, 2004, 10, 6360S-6366S.	3.2	69
36	Tumor-Derived Vascular Pericytes Anergize Th Cells. Journal of Immunology, 2013, 191, 971-981.	0.4	69

#	Article	IF	CITATIONS
37	Gene-based strategies for the immunotherapy of cancer. Journal of Molecular Medicine, 1997, 75, 478-491.	1.7	67
38	IL-12 Gene Therapy Using Direct Injection of Tumors with Genetically Engineered Autologous Fibroblasts. University of Pittsburgh, Pittsburgh, Pennsylvania. Human Gene Therapy, 1995, 6, 1607-1624.	1.4	66
39	Expression of EphA2 is prognostic of disease-free interval and overall survival in surgically treated patients with renal cell carcinoma. Clinical Cancer Research, 2005, 11, 226-31.	3.2	66
40	Identification of wild-type and mutant p53 peptides binding to HLA-A2 assessed by a peptide loading-deficient cell line assay and a novel major histocompatibility complex class I peptide binding assay. European Journal of Immunology, 1994, 24, 765-768.	1.6	65
41	Dendritic Cell/Peptide Cancer Vaccines: Clinical Responsiveness and Epitope Spreading. Immunological Investigations, 2000, 29, 121-125.	1.0	61
42	Preferential Expression of Very Late Antigen-4 on Type 1 CTL Cells Plays a Critical Role in Trafficking into Central Nervous System Tumors. Cancer Research, 2007, 67, 6451-6458.	0.4	60
43	Tumor-derived exosomes promote carcinogenesis of murine oral squamous cell carcinoma. Carcinogenesis, 2020, 41, 625-633.	1.3	60
44	Identification of Interleukin-13 Receptor α2 Peptide Analogues Capable of Inducing Improved Antiglioma CTL Responses. Cancer Research, 2006, 66, 5883-5891.	0.4	59
45	Combined vaccine+axitinib therapy yields superior antitumor efficacy in a murine melanoma model. Melanoma Research, 2012, 22, 236-243.	0.6	59
46	Tbet and IL-36Î ³ cooperate in therapeutic DC-mediated promotion of ectopic lymphoid organogenesis in the tumor microenvironment. Oncolmmunology, 2017, 6, e1322238.	2.1	59
47	Association of IL-36Î ³ with tertiary lymphoid structures and inflammatory immune infiltrates in human colorectal cancer. Cancer Immunology, Immunotherapy, 2019, 68, 109-120.	2.0	59
48	Proinflammatory Cytokines and CD40 Ligand Enhance Cross-Presentation and Cross-Priming Capability of Human Dendritic Cells Internalizing Apoptotic Cancer Cells. Journal of Immunotherapy, 2001, 24, 162-171.	1.2	57
49	Ectopic Expression of Interferon Regulatory Factor-1 Promotes Human Breast Cancer Cell Death and Results in Reduced Expression of Survivin. Cancer Research, 2004, 64, 8381-8388.	0.4	57
50	Neurokinin-1 receptor agonists bias therapeutic dendritic cells to induce type 1 immunity by licensing host dendritic cells to produce IL-12. Blood, 2013, 121, 2923-2933.	0.6	57
51	STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment. , 2021, 9, e001906.		57
52	Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors. Journal of Translational Medicine, 2004, 2, 40.	1.8	56
53	Delivery of Dendritic Cells Engineered to Secrete IFN-α into Central Nervous System Tumors Enhances the Efficacy of Peripheral Tumor Cell Vaccines: Dependence on Apoptotic Pathways. Journal of Immunology, 2005, 175, 2730-2740.	0.4	54
54	Nitric Oxide Sensitizes Tumor Cells to Dendritic Cell–Mediated Apoptosis, Uptake, and Cross-Presentation. Cancer Research, 2005, 65, 8461-8470.	0.4	54

#	Article	IF	CITATIONS
55	Chronic inflammation and immunologic-based constraints in malignant disease. Immunotherapy, 2011, 3, 1265-1274.	1.0	53
56	Melanocyte-Specific Immune Response in Melanoma and Vitiligo: Two Faces of the Same Coin?. Pigment Cell & Melanoma Research, 2003, 16, 254-260.	4.0	52
57	Combination Therapy with HSP90 Inhibitor 17-DMAG Reconditions the Tumor Microenvironment to Improve Recruitment of Therapeutic T cells. Cancer Research, 2012, 72, 3196-3206.	0.4	52
58	Combined VLA-4–Targeted Radionuclide Therapy and Immunotherapy in a Mouse Model of Melanoma. Journal of Nuclear Medicine, 2018, 59, 1843-1849.	2.8	52
59	Immunotherapy of murine colon cancer using receptor tyrosine kinase EphA2â€derived peptideâ€pulsed dendritic cell vaccines. Cancer, 2007, 110, 1469-1477.	2.0	49
60	Therapeutic Lymphoid Organogenesis in the Tumor Microenvironment. Advances in Cancer Research, 2015, 128, 197-233.	1.9	45
61	Third Keystone Symposium on Cellular Immunology and the Immunotherapy of Cancer Antigen Processing and Presentation Autologous Human Dendriphages Pulsed with Synthetic or Natural Tumor Peptides Elicit Tumor-Specific CTLs In Vitro. Journal of Immunotherapy, 1998, 21, 149.	1.2	44
62	Vaccines Targeting Tumor Blood Vessel Antigens Promote CD8+ T Cell-Dependent Tumor Eradication or Dormancy in HLA-A2 Transgenic Mice. Journal of Immunology, 2012, 188, 1782-1788.	0.4	44
63	Interferon-alpha (IFN-α)–conditioned DC Preferentially Stimulate Type-1 and Limit Treg-type In Vitro T-cell Responses From RCC Patients. Journal of Immunotherapy, 2008, 31, 254-262.	1.2	43
64	Interleukin 18 gene transfer expands the repertoire of antitumor Th1-type immunity elicited by dendritic cell-based vaccines in association with enhanced therapeutic efficacy. Cancer Research, 2002, 62, 5853-8.	0.4	43
65	Intratumoral IL-12 Gene Therapy Results in the Crosspriming of Tc1 Cells Reactive Against Tumor-associated Stromal Antigens. Molecular Therapy, 2011, 19, 805-814.	3.7	41
66	Delivery of Interferon-α Transfected Dendritic Cells into Central Nervous System Tumors Enhances the Antitumor Efficacy of Peripheral Peptide-Based Vaccines. Cancer Research, 2004, 64, 5830-5838.	0.4	40
67	A Therapeutic OX40 Agonist Dynamically Alters Dendritic, Endothelial, and T Cell Subsets within the Established Tumor Microenvironment. Cancer Research, 2010, 70, 9041-9052.	0.4	40
68	Dendritic Cell Based Therapy of Cancer. Advances in Experimental Medicine and Biology, 1997, 417, 551-569.	0.8	40
69	Dasatinib promotes the expansion of a therapeutically superior T-cell repertoire in response to dendritic cell vaccination against melanoma. OncoImmunology, 2014, 3, e27589.	2.1	38
70	Myeloid-derived Suppressor Cells Adhere to Physiologic STAT3- vs STAT5-dependent Hematopoietic Programming, Establishing Diverse Tumor-Mediated Mechanisms of Immunologic Escape. Immunological Investigations, 2012, 41, 680-710.	1.0	37
71	Tumorâ€essociated mesenchymal stem cells inhibit naÃ⁻ve T cell expansion by blocking cysteine export from dendritic cells. International Journal of Cancer, 2016, 139, 2068-2081.	2.3	37
72	Heat Shock Protein 90 Inhibitor 17-Dimethylaminoethylamino-17-Demethoxygeldanamycin Enhances EphA2+ Tumor Cell Recognition by Specific CD8+ T Cells. Cancer Research, 2009, 69, 6995-7003.	0.4	36

#	Article	IF	CITATIONS
73	Application of IL-5 ELISPOT assays to quantification of antigen-specific T helper responses. Journal of Immunological Methods, 2002, 261, 145-156.	0.6	35
74	Genetic Vaccines To Potentiate the Effective CD103+ Dendritic Cell–Mediated Cross-Priming of Antitumor Immunity. Journal of Immunology, 2015, 194, 5937-5947.	0.4	35
75	Murine Models of Cancer Cytokine Gene Therapy Using Interleukin-12. Annals of the New York Academy of Sciences, 1996, 795, 275-283.	1.8	34
76	IL-4-Transfected Tumor Cell Vaccines Activate Tumor-Infiltrating Dendritic Cells and Promote Type-1 Immunity. Journal of Immunology, 2005, 174, 7194-7201.	0.4	34
77	miR-29b and miR-198 overexpression in CD8+ T cells of renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to immune dysfunction. Journal of Translational Medicine, 2016, 14, 84.	1.8	34
78	Interleukin-12 Gene Therapy Prevents Establishment of SCC VII Squamous Cell Carcinomas, Inhibits Tumor Growth, and Elicits Long-term Antitumor Immunity in Syngeneic C3H Mice. Laryngoscope, 1998, 108, 261-268.	1.1	32
79	A Mycoplasma Peptide Elicits Heteroclitic CD4+ T Cell Responses against Tumor Antigen MAGE-A6. Clinical Cancer Research, 2007, 13, 6796-6806.	3.2	32
80	CD8+ T-Cell Responses against Hemoglobin-β Prevent Solid Tumor Growth. Cancer Research, 2008, 68, 8076-8084.	0.4	31
81	Ectopic T-bet Expression Licenses Dendritic Cells for IL-12-Independent Priming of Type 1 T Cells In Vitro. Journal of Immunology, 2009, 183, 7250-7258.	0.4	30
82	Single injection of IL-12 coacervate as an effective therapy against B16-F10 melanoma in mice. Journal of Controlled Release, 2020, 318, 270-278.	4.8	30
83	Effective induction of antiglioma cytotoxic T cells by coadministration of interferon-β gene vector and dendritic cells. Cancer Gene Therapy, 2003, 10, 549-558.	2.2	29
84	Disease-Stage Variance in Functional CD4+ T-Cell Responses Against Novel Pan-Human Leukocyte Antigen-D Region Presented Human Papillomavirus-16 E7 Epitopes. Clinical Cancer Research, 2004, 10, 3301-3308.	3.2	29
85	EBV-specific memory CD8+ T cell phenotype and function in stable solid organ transplant patients. Transplant Immunology, 2005, 14, 109-116.	0.6	28
86	Enhancement in Specific CD8+ T Cell Recognition of EphA2+ Tumors In Vitro and In Vivo after Treatment with Ligand Agonists. Journal of Immunology, 2008, 181, 7721-7727.	0.4	28
87	Stat6 Signaling Suppresses VLA-4 Expression by CD8+ T Cells and Limits Their Ability to Infiltrate Tumor Lesions In Vivo. Journal of Immunology, 2008, 181, 104-108.	0.4	28
88	DLK1: A Novel Target for Immunotherapeutic Remodeling of the Tumor Blood Vasculature. Molecular Therapy, 2013, 21, 1958-1968.	3.7	28
89	Combinational FLt3 Ligand and Granulocyte Macrophage Colony-Stimulating Factor Treatment Promotes Enhanced Tumor Infiltration by Dendritic Cells and Antitumor CD8+ T-Cell Cross-priming but Is Ineffective as a Therapy. Cancer Research, 2006, 66, 4895-4903.	0.4	27
90	Helper Function of Memory CD8+ T Cells: Heterologous CD8+ T Cells Support the Induction of Therapeutic Cancer Immunity. Cancer Research, 2007, 67, 10012-10018.	0.4	27

#	Article	IF	CITATIONS
91	EX VIVO GENERATION OF EFFECTIVE EPSTEIN-BARR VIRUS (EBV)-SPECIFIC CD8+ CYTOTOXIC T LYMPHOCYTES FROM THE PERIPHERAL BLOOD OF IMMUNOCOMPETENT EPSTEIN BARR VIRUS-SERONEGATIVE INDIVIDUALS1. Transplantation, 2000, 70, 1507-1515.	0.5	26
92	IL-4 Suppresses Very Late Antigen-4 Expression Which is Required for Therapeutic Th1 T-cell Trafficking Into Tumors. Journal of Immunotherapy, 2009, 32, 793-802.	1.2	25
93	Therapeutic Use of Dendritic Cells to Promote the Extranodal Priming of Anti-Tumor Immunity. Frontiers in Immunology, 2013, 4, 388.	2.2	25
94	Molecular mimicry of MAGE-A6 and <i>Mycoplasma penetrans</i> HF-2 epitopes in the induction of antitumor CD8 ⁺ T-cell responses. Oncolmmunology, 2014, 3, e954501.	2.1	25
95	A 'good death' for tumor immunology. Nature Medicine, 2007, 13, 28-30.	15.2	24
96	DC expressing transgene Foxp3 are regulatory APC. European Journal of Immunology, 2010, 40, 480-493.	1.6	24
97	Dendritic cell vaccines targeting tumor blood vessel antigens in combination with dasatinib induce therapeutic immune responses in patients with checkpoint-refractory advanced melanoma. , 2021, 9, e003675.		24
98	Ex Vivo Priming of NaÃ ⁻ ve T Cells Into EBV-Specific Th1/Tc1 Effector Cells by Mature Autologous DC Loaded with Apoptotic/Necrotic LCL. American Journal of Transplantation, 2003, 3, 1369-1377.	2.6	23
99	ILâ€4 inhibits VLAâ€4 expression on Tc1 cells resulting in poor tumor infiltration and reduced therapy benefit. European Journal of Immunology, 2008, 38, 2865-2873.	1.6	22
100	JAK3/STAT5/6 Pathway Alterations Are Associated with Immune Deviation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtext>CD </mml:mtext> <mml:msup> mathvariant="bold">8 <mml:mtext> + </mml:mtext> </mml:msup> </mml:mrow> T Cells in Renal Cell Carcinoma Patients. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-13.</mml:math 	۲. amd:mn نیرین	22
101	Intratumoral delivery of mTORC2-deficient dendritic cells inhibits B16 melanoma growth by promoting CD8 ⁺ effector T cell responses. OncoImmunology, 2016, 5, e1146841.	2.1	21
102	RCS5–TGFβ–Smad2/3 axis switches pro- to anti-apoptotic signaling in tumor-residing pericytes, assisting tumor growth. Cell Death and Differentiation, 2021, 28, 3052-3076.	5.0	21
103	Tumor-Derived α-Fetoprotein Directly Drives Human Natural Killer–Cell Activation and Subsequent Cell Death. Cancer Immunology Research, 2017, 5, 493-502.	1.6	20
104	Circulating Type-1 Anti-Tumor CD4 ⁺ T Cells are Preferentially Pro-Apoptotic in Cancer Patients. Frontiers in Oncology, 2014, 4, 266.	1.3	19
105	Actin-binding protein profilin1 promotes aggressiveness of clear-cell renal cell carcinoma cells. Journal of Biological Chemistry, 2020, 295, 15636-15649.	1.6	18
106	Human Papillomavirus L1L2-E7 Virus-Like Particles Partially Mature Human Dendritic Cells and Elicit E7-Specific T-Helper Responses From Patients With Cervical Intraepithelial Neoplasia or Cervical Cancer In Vitro. Human Immunology, 2005, 66, 762-772.	1.2	17
107	Immunotherapeutic Targeting of Tumor-Associated Blood Vessels. Advances in Experimental Medicine and Biology, 2017, 1036, 191-211.	0.8	17
108	IL-12 Production by Human Monocyte-Derived Dendritic Cells. Journal of Immunotherapy, 2005, 28, 306-313.	1.2	16

#	Article	IF	CITATIONS
109	Biosynthesis and Functional Significance of Peripheral Node Addressin in Cancer-Associated TLO. Frontiers in Immunology, 2016, 7, 301.	2.2	16
110	STINGing the Tumor Microenvironment to Promote Therapeutic Tertiary Lymphoid Structure Development. Frontiers in Immunology, 2021, 12, 690105.	2.2	16
111	Dendritic cell-derived interleukin-15 is crucial for therapeutic cancer vaccine potency. Oncolmmunology, 2014, 3, e959321.	2.1	15
112	Dysregulated NF-κB–Dependent ICOSL Expression in Human Dendritic Cell Vaccines Impairs T-cell Responses in Patients with Melanoma. Cancer Immunology Research, 2020, 8, 1554-1567.	1.6	15
113	Focus on FOCIS: Interleukin 2 treatment associated autoimmunity. Clinical Immunology, 2008, 127, 123-129.	1.4	14
114	Integrating costimulatory agonists to optimize immune-based cancer therapies. Immunotherapy, 2009, 1, 249-264.	1.0	14
115	Generation of robust CD8 ⁺ Tâ€cell responses against subdominant epitopes in conserved regions of HIVâ€1 by repertoire mining with mimotopes. European Journal of Immunology, 2010, 40, 1950-1962.	1.6	14
116	Intralesional Delivery of Dendritic Cells Engineered to Express T-bet Promotes Protective Type 1 Immunity and the Normalization of the Tumor Microenvironment. Journal of Immunology, 2010, 185, 2895-2902.	0.4	14
117	Therapeutic efficacy of combined vaccination against tumor pericyte-associated antigens DLK1 and DLK2 in mice. Oncolmmunology, 2017, 6, e1290035.	2.1	14
118	Impact of combination immunochemotherapies on progression of 4NQO-induced murine oral squamous cell carcinoma. Cancer Immunology, Immunotherapy, 2019, 68, 1133-1141.	2.0	14
119	Dendritic cell-based vaccines and therapies for cancer. Expert Opinion on Biological Therapy, 2002, 2, 919-928.	1.4	13
120	Sensory Nerves Impede the Formation of Tertiary Lymphoid Structures and Development of Protective Antimelanoma Immune Responses. Cancer Immunology Research, 2022, 10, 1141-1154.	1.6	13
121	Augmentation of Type-1 Polarizing Ability of Monocyte-Derived Dendritic Cells from Chronically Immunosuppressed Organ-Transplant Recipients. Transplantation, 2005, 79, 451-459.	0.5	12
122	Intratumoral delivery of tumor antigen-loaded DC and tumor-primed CD4 ⁺ T cells combined with agonist α-GITR mAb promotes durable CD8 ⁺ T-cell-dependent antitumor immunity. Oncolmmunology, 2017, 6, e1315487.	2.1	12
123	IL-36 Signaling in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1240, 95-110.	0.8	11
124	Combination strategies to enhance the potency of monocyte-derived dendritic cell-based cancer vaccines. Immunotherapy, 2016, 8, 1205-1218.	1.0	10
125	Cutaneous Melanoma: Mutational Status and Potential Links to Tertiary Lymphoid Structure Formation. Frontiers in Immunology, 2021, 12, 629519.	2.2	10
126	Improving Immunotherapy by Conditionally Enhancing MHC Class I Presentation of Tumor Antigen-Derived Peptide Epitopes. Critical Reviews in Immunology, 2007, 27, 485-493.	1.0	10

#	Article	IF	CITATIONS
127	Giving DNA vaccines a helping hand. Nature Medicine, 1998, 4, 1239-1240.	15.2	8
128	Accumulation of low-avidity anti-melanocortin receptor 1 (anti-MC1R) CD8+ T cells in the lesional skin of a patient with melanoma-related depigmentation. Melanoma Research, 2006, 16, 165-174.	0.6	8
129	Treatment-Enhanced CD4+Foxp3+Glucocorticoid-Induced TNF Receptor Family RelatedHighRegulatory Tumor-Infiltrating T Cells Limit the Effectiveness of Cytokine-Based Immunotherapy. Journal of Immunology, 2007, 178, 3400-3408.	0.4	8
130	Combined Tbet and IL12 Gene Therapy Elicits and Recruits Superior Antitumor Immunity In Vivo. Molecular Therapy, 2012, 20, 644-651.	3.7	8
131	Class I-like CD1A-C Do Not Protect Target Cells from NK-Mediated Cytolysis. Cellular Immunology, 1996, 167, 154-156.	1.4	6
132	Amino acid substitutions at position 97 in HLA-A2 segregate cytolysis from cytokine release in MART-1/Melan-A peptide AAGIGILTV-specific cytotoxic T lymphocytes. European Journal of Immunology, 1996, 26, 2613-2623.	1.6	6
133	Shock block for improved immunotherapy. Oncolmmunology, 2012, 1, 1427-1429.	2.1	6
134	Host immune response in renal cell cancer: Interleukin-4 (IL-4) and IL-10 mRNA are frequently detected in freshly collected tumor-infiltrating lymphocytes. Cancer Immunology, Immunotherapy, 1995, 41, 111-121.	2.0	6
135	Improved prognosis and evidence of enhanced immunogenicity in tumor and circulation of high-risk melanoma patients with unknown primary. , 2022, 10, e004310.		6
136	Progenipoietin-generated dendritic cells exhibit anti-tumor efficacy in a therapeutic murine tumor model. International Journal of Cancer, 2002, 100, 586-591.	2.3	5
137	Inhibiting Autophagy in Renal Cell Cancer and the Associated Tumor Endothelium. Cancer Journal (Sudbury, Mass), 2019, 25, 165-177.	1.0	5
138	Tumor Arrests DN2 to DN3 Pro T Cell Transition and Promotes Its Conversion to Thymic Dendritic Cells by Reciprocally Regulating Notch1 and Ikaros Signaling. Frontiers in Immunology, 2020, 11, 898.	2.2	5
139	Enhanced immune activation within the tumor microenvironment and circulation of female high-risk melanoma patients and improved survival with adjuvant CTLA4 blockade compared to males. Journal of Translational Medicine, 2022, 20, .	1.8	5
140	The Immunology of DNA Vaccines. , 2000, 29, 37-64.		4
141	Vaccine therapy + dasatinib for the treatment of patients with stage IIIB–IV melanoma. Melanoma Management, 2016, 3, 251-254.	0.1	4
142	Update on vaccine development for renal cell cancer. Research and Reports in Urology, 2010, Volume 2, 125-141.	0.6	3
143	Unbiased High-Throughput Drug Combination Pilot Screening Identifies Synergistic Drug Combinations Effective against Patient-Derived and Drug-Resistant Melanoma Cell Lines. SLAS Discovery, 2021, 26, 712-729.	1.4	3
144	CD40 Cross-Linking Induces Migration of Renal Tumor Cell through Nuclear Factor of Activated T Cells (NFAT) Activation. International Journal of Molecular Sciences, 2021, 22, 8871.	1.8	3

#	ARTICLE	IF	CITATIONS
145	PET Imaging of VLA-4 in a New BRAFV600E Mouse Model of Melanoma. Molecular Imaging and Biology, 2022, 24, 425-433.	1.3	3
146	Report on the ISBTC Mini-symposium on Biologic Effects of Targeted Therapeutics. Journal of Immunotherapy, 2007, 30, 577-590.	1.2	2
147	Skin immunization for effective treatment of multifocal melanoma refractory to PD1 blockade and Braf inhibitors. , 2021, 9, e001179.		2
148	Monitoring Antigen-Specific T Cell Responses Using Real-Time PCR. Methods in Molecular Biology, 2014, 1186, 65-74.	0.4	2
149	Melanoma vaccines: in search of a clinical paradigm. Melanoma Research, 2007, 17, 137-138.	0.6	1
150	Pilot trial of a type I - polarized autologous dendritic cell vaccine incorporating tumor blood vessel antigen-derived peptides in patients with metastatic breast cancer. , 2015, 3, .		1
151	CD4+ T-Cell-Mediated Immunity to Cancer. , 2004, , 67-86.		1
152	EphA2: A Novel Target in Renal Cell Carcinoma. , 2009, , 347-366.		1
153	Inhibition of HSPs for Enhanced Immunity. , 2018, , 157-180.		0
154	Neoepitopes as Difference Makers for General Cancer Vaccines?. Clinical Cancer Research, 2020, 26, 4429-4431.	3.2	0
155	Thirty years of therapeutic innovation in melanoma research. Melanoma Research, 2021, 31, 105-107.	0.6	0
156	Dendritic Cell Maturation Versus Polarization in Tumor Escape. , 2009, , 257-268.		0
157	Molecular Immunotherapeutics and Vaccines for Renal Cell Carcinoma and Its Vasculature. , 2013, , 371-383.		0
158	Vaccines in RCC: Clinical and Biological Relevance. , 2015, , 483-525.		0
159	Vascular Normalization, T Cell Trafficking and Anti-tumor Immunity. Resistance To Targeted Anti-cancer Therapeutics, 2016, , 51-76.	0.1	0
160	Poorer survival outcomes in patients with multiple versus single primary melanoma. Cancer, 2022, , .	2.0	0