
Philip E Higuera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/189796/publications.pdf Version: 2024-02-01

DHILLD F HICLIEDA

#	Article	IF	CITATIONS
1	Recordâ€ s etting climate enabled the extraordinary 2020 fire season in the western United States. Global Change Biology, 2021, 27, 1-2.	9.5	173
2	Wildfire impacts on forest microclimate vary with biophysical context. Ecosphere, 2021, 12, e03467.	2.2	37
3	Rocky Mountain subalpine forests now burning more than any time in recent millennia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	60
4	Vegetation response to wildfire and climate forcing in a Rocky Mountain lodgepole pine forest over the past 2500 years. Holocene, 2020, 30, 1493-1503.	1.7	7
5	Wildfire-Driven Forest Conversion in Western North American Landscapes. BioScience, 2020, 70, 659-673.	4.9	323
6	Arctic and boreal paleofire records reveal drivers of fire activity and departures from Holocene variability. Ecology, 2020, 101, e03096.	3.2	20
7	The biogeochemical consequences of late Holocene wildfires in three subalpine lakes from northern Colorado. Quaternary Science Reviews, 2020, 236, 106293.	3.0	10
8	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	4.0	281
9	Fire-catalyzed vegetation shifts in ponderosa pine and Douglas-fir forests of the western United States. Environmental Research Letters, 2020, 15, 1040b8.	5.2	29
10	First- and Second-Order Fire Effects. , 2020, , 461-463.		0
11	Microclimatic buffering in forests of the future: the role of local water balance. Ecography, 2019, 42, 1-11.	4.5	253
12	Rethinking resilience to wildfire. Nature Sustainability, 2019, 2, 797-804.	23.7	174
13	Climate, Environment, and Disturbance History Govern Resilience of Western North American Forests. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	174
14	Forest succession and climate variability interacted to control fire activity over the last four centuries in an Alaskan boreal landscape. Landscape Ecology, 2019, 34, 227-241.	4.2	7
15	Consequences of climatic thresholds for projecting fire activity and ecological change. Global Ecology and Biogeography, 2019, 28, 521-532.	5.8	12
16	Integrating Subjective and Objective Dimensions of Resilience in Fire-Prone Landscapes. BioScience, 2019, 69, 379-388.	4.9	40
17	Impacts of growingâ€season climate on tree growth and postâ€fire regeneration in ponderosa pine and Douglasâ€fir forests. Ecosphere, 2019, 10, e02679.	2.2	33
18	Climate will increasingly determine postâ€fire tree regeneration success in lowâ€elevation forests, Northern Rockies, <scp>USA</scp> . Ecosphere, 2019, 10, e02568.	2.2	76

#	Article	IF	CITATIONS
19	Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6193-6198.	7.1	307
20	Post-Fire Carbon Dynamics in Subalpine Forests of the Rocky Mountains. Fire, 2019, 2, 58.	2.8	14
21	First- and Second-Order Fire Effects. , 2019, , 1-3.		0
22	Bark beetles as agents of change in social–ecological systems. Frontiers in Ecology and the Environment, 2018, 16, S34.	4.0	74
23	Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 2018, 21, 243-252.	6.4	448
24	Use of landscape simulation modeling to quantify resilience for ecological applications. Ecosphere, 2018, 9, e02414.	2.2	49
25	Anthropogenic use of fire led to degraded scots pine-lichen forest in northern Sweden. Anthropocene, 2018, 24, 14-29.	3.3	18
26	Anticipating fireâ€mediated impacts of climate change using a demographic framework. Functional Ecology, 2018, 32, 1729-1745.	3.6	55
27	Accuracy of node and bud-scar counts for aging two dominant conifers in western North America. Forest Ecology and Management, 2018, 427, 365-371.	3.2	17
28	Climatic thresholds shape northern highâ€latitude fire regimes and imply vulnerability to future climate change. Ecography, 2017, 40, 606-617.	4.5	138
29	Managing bark beetle impacts on ecosystems and society: priority questions to motivate future research. Journal of Applied Ecology, 2017, 54, 750-760.	4.0	68
30	Fire catalyzed rapid ecological change in lowland coniferous forests of the Pacific Northwest over the past 14,000 years. Ecology, 2017, 98, 2356-2369.	3.2	41
31	Modern pollen from small hollows reflects <i>Athrotaxis cupressoides</i> density across a wildfire gradient in subalpine forests of the Central Plateau, Tasmania, Australia. Holocene, 2017, 27, 1781-1788.	1.7	2
32	Centennial-scale reductions in nitrogen availability in temperate forests of the United States. Scientific Reports, 2017, 7, 7856.	3.3	53
33	A modelâ€based approach to wildland fire reconstruction using sediment charcoal records. Environmetrics, 2017, 28, e2450.	1.4	9
34	Fire-regime variability impacts forest carbon dynamics for centuries to millennia. Biogeosciences, 2017, 14, 3873-3882.	3.3	20
35	Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons. Biogeosciences, 2016, 13, 3225-3244.	3.3	142
36	Replacing time with space: using laboratory fires to explore the effects of repeated burning on black carbon degradation. International Journal of Wildland Fire, 2016, 25, 242.	2.4	18

Philip E Higuera

#	Article	IF	CITATIONS
37	Wildfires and geochemical change in a subalpine forest over the past six millennia. Environmental Research Letters, 2016, 11, 125003.	5.2	25
38	The Science of Firescapes: Achieving Fire-Resilient Communities. BioScience, 2016, 66, 130-146.	4.9	157
39	Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 2016, 14, 369-378.	4.0	947
40	A Framework to Assess Biogeochemical Response to Ecosystem Disturbance Using Nutrient Partitioning Ratios. Ecosystems, 2016, 19, 387-395.	3.4	22
41	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016, 11, 034014.	5.2	199
42	Fire legacies impact conifer regeneration across environmental gradients in the U.S. northern Rockies. Landscape Ecology, 2016, 31, 619-636.	4.2	128
43	Indicators of Climate Change in Idaho: An Assessment Framework for Coupling Biophysical Change and Social Perceptiona. Weather, Climate, and Society, 2015, 7, 238-254.	1.1	17
44	The Changing Strength and Nature of Fire-Climate Relationships in the Northern Rocky Mountains, U.S.A., 1902-2008. PLoS ONE, 2015, 10, e0127563.	2.5	92
45	Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska. Biogeosciences, 2015, 12, 4017-4027.	3.3	35
46	Taking time to consider the causes and consequences of large wildfires. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13137-13138.	7.1	6
47	Sensitivity and complacency of sedimentary biogeochemical records to climate-mediated forest disturbances. Earth-Science Reviews, 2015, 148, 121-133.	9.1	21
48	Arctic tundra fires: natural variability and responses to climate change. Frontiers in Ecology and the Environment, 2015, 13, 369-377.	4.0	135
49	Biogeochemical impacts of wildfires over four millennia in a <scp>R</scp> ocky <scp>M</scp> ountain subalpine watershed. New Phytologist, 2014, 203, 900-912.	7.3	81
50	Fireâ€regime complacency and sensitivity to centennialâ€ŧhrough millennialâ€scale climate change in <scp>R</scp> ocky <scp>M</scp> ountain subalpine forests, <scp>C</scp> olorado, <scp>USA</scp> . Journal of Ecology, 2014, 102, 1429-1441.	4.0	42
51	Reconstructing Disturbances and Their Biogeochemical Consequences over Multiple Timescales. BioScience, 2014, 64, 105-116.	4.9	80
52	A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes. Global Ecology and Biogeography, 2013, 22, 900-912.	5.8	128
53	Climatic and land cover influences on the spatiotemporal dynamics of Holocene boreal fire regimes. Ecology, 2013, 94, 389-402.	3.2	29
54	Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13055-13060.	7.1	320

PHILIP E HIGUERA

#	Article	IF	CITATIONS
55	Fuel moisture influences on fireâ€altered carbon in masticated fuels: An experimental study. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 30-40.	3.0	34
56	The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environmental Research Letters, 2012, 7, 044039.	5.2	98
57	Variability of tundra fire regimes in Arctic Alaska: millennial-scale patterns and ecological implications. , 2011, 21, 3211-3226.		68
58	Short Paper: A signal-to-noise index to quantify the potential for peak detection in sediment–charcoal records. Quaternary Research, 2011, 75, 11-17.	1.7	174
59	Peak detection in sediment - charcoal records: impacts of alternative data analysis methods on fire-history interpretations. International Journal of Wildland Fire, 2010, 19, 996.	2.4	283
60	Tundra burning in Alaska: Linkages to climatic change and sea ice retreat. Journal of Geophysical Research, 2010, 115, .	3.3	125
61	Paleoecological Perspectives on Fire Ecology: Revisiting the Fire-Regime Concept~!2009-09-02~!2009-11-09~!2010-03-05~!. Open Ecology Journal, 2010, 3, 6-23.	2.0	264
62	Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2519-2524.	7.1	352
63	Comparing fire-history interpretations based on area, number and estimated volume of macroscopic charcoal in lake sediments. Quaternary Research, 2009, 72, 462-468.	1.7	49
64	Vegetation mediated the impacts of postglacial climate change on fire regimes in the south entral Brooks Range, Alaska. Ecological Monographs, 2009, 79, 201-219.	5.4	479
65	Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests. Ecology, 2009, 90, 1788-1801.	3.2	33
66	Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics, 2008, 30, 887-907.	3.8	590
67	Climate and human influences on globalÂbiomass burning over the past twoÂmillennia. Nature Geoscience, 2008, 1, 697-702.	12.9	686
68	Regional and local controls on postglacial vegetation and fire in the Siskiyou Mountains, northern California, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265, 159-169.	2.3	38
69	Millennial-scale changes in local vegetation and fire regimes on Mount Constitution, Orcas Island, Washington, USA, using small hollow sediments. Canadian Journal of Forest Research, 2008, 38, 539-552.	1.7	24
70	Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change. PLoS ONE, 2008, 3, e0001744.	2.5	195
71	Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quaternary Science Reviews, 2007, 26, 1790-1809.	3.0	298
72	Quantifying the source area of macroscopic charcoal with a particle dispersal model. Quaternary Research, 2007, 67, 304-310.	1.7	133

5

Philip E Higuera

#	Article	IF	CITATIONS
73	How Climate and Vegetation Influence the fire Regime of the Alaskan Boreal Biome: The Holocene Perspective. Mitigation and Adaptation Strategies for Global Change, 2006, 11, 829-846.	2.1	66
74	Reconstructing fire regimes with charcoal from small-hollow sediments: a calibration with tree-ring records of fire. Holocene, 2005, 15, 238-251.	1.7	133
75	Population Trends of Wintering Bats in Vermont. Northeastern Naturalist, 2001, 8, 51.	0.3	Ο