Alessandro Sannino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1897054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials, 2009, 2, 353-373.	2.9	660
2	Novel superabsorbent celluloseâ€based hydrogels crosslinked with citric acid. Journal of Applied Polymer Science, 2008, 110, 2453-2460.	2.6	386
3	Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns and Trauma, 2014, 2, 153.	0.7	235
4	Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceramics International, 2019, 45, 2803-2810.	4.8	173
5	Biodegradable Superabsorbent Hydrogel IncreasesWater Retention Properties of Growing Media and Plant Growth. Agriculture and Agricultural Science Procedia, 2015, 4, 451-458.	0.6	150
6	Metal-Based Antibacterial Substrates for Biomedical Applications. Biomacromolecules, 2015, 16, 1873-1885.	5.4	139
7	Fabricating tubular scaffolds with a radial pore size gradient by a spinning technique. Biomaterials, 2006, 27, 866-874.	11.4	115
8	Collagenâ€based matrices with axially oriented pores. Journal of Biomedical Materials Research - Part A, 2008, 85A, 757-767.	4.0	114
9	Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. Materials Science and Engineering C, 2020, 113, 110963.	7.3	102
10	Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chemistry, 2006, 8, 439.	9.0	95
11	Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering. Ceramics International, 2013, 39, 619-627.	4.8	93
12	Photoâ€crosslinked poly(ethylene glycol) diacrylate (<scp>PEGDA</scp>) hydrogels from low molecular weight prepolymer: Swelling and permeation studies. Journal of Applied Polymer Science, 2017, 134, .	2.6	92
13	Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceramics International, 2014, 40, 15455-15462.	4.8	88
14	Genipinâ€crossâ€linked chitosanâ€based hydrogels: Reaction kinetics and structureâ€related characteristics. Journal of Applied Polymer Science, 2015, 132, .	2.6	88
15	Experimental Assessment of the Use of a Novel Superabsorbent polymer (SAP) for the Optimization ofWater Consumption in Agricultural Irrigation Process. Water (Switzerland), 2014, 6, 2056-2069.	2.7	87
16	The feasibility of printing polylactic acid–nanohydroxyapatite composites using a lowâ€cost fused deposition modeling 3D printer. Journal of Applied Polymer Science, 2017, 134, .	2.6	81
17	Metal nanoantimicrobials for textile applications. Nanotechnology Reviews, 2013, 2, 307-331.	5.8	67
18	Ultrasonic monitoring of the network formation in superabsorbent cellulose based hydrogels. Polymer, 2005, 46, 1796-1803.	3.8	65

Alessandro Sannino

#	Article	IF	CITATIONS
19	3D printing of hydroxyapatite polymer-based composites for bone tissue engineering. Journal of Polymer Engineering, 2017, 37, 741-746.	1.4	65
20	Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix. Materials Science and Engineering C, 2016, 63, 499-505.	7.3	62
21	Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 644595.	4.1	57
22	Influence of Nanofiber Orientation on Morphological and Mechanical Properties of Electrospun Chitosan Mats. Journal of Healthcare Engineering, 2018, 2018, 1-12.	1.9	56
23	Assessment of collagen crosslinking and denaturation for the design of regenerative scaffolds. Journal of Biomedical Materials Research - Part A, 2016, 104, 186-194.	4.0	55
24	One-step solvent-free process for the fabrication of high loaded PLA/HA composite filament for 3D printing. Journal of Thermal Analysis and Calorimetry, 2018, 134, 575-582.	3.6	53
25	Biocompatible Collagen Paramagnetic Scaffold for Controlled Drug Release. Biomacromolecules, 2015, 16, 2599-2608.	5.4	52
26	Gelatin/nanoâ€hydroxyapatite hydrogel scaffold prepared by solâ€gel technology as filler to repair bone defects. Journal of Biomedical Materials Research - Part A, 2018, 106, 2007-2019.	4.0	52
27	Highâ€Performance Hydroxyapatite Scaffolds for Bone Tissue Engineering Applications. International Journal of Applied Ceramic Technology, 2012, 9, 507-516.	2.1	49
28	13C Solid-State NMR Determination of Cross-Linking Degree in Superabsorbing Cellulose-Based Networks. Macromolecules, 2000, 33, 430-437.	4.8	48
29	Efficacy of silver coated surgical sutures on bacterial contamination, cellular response and wound healing. Materials Science and Engineering C, 2016, 69, 884-893.	7.3	48
30	Collagen Scaffold for Cartilage Tissue Engineering: The Benefit of Fibrin Glue and the Proper Culture Time in an Infant Cartilage Model. Tissue Engineering - Part A, 2014, 20, 1113-1126.	3.1	44
31	Biodegradable poly(lactic acid)/celluloseâ€based superabsorbent hydrogel composite material as water and fertilizer reservoir in agricultural applications. Journal of Applied Polymer Science, 2019, 136, 47546.	2.6	44
32	Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas. Biomaterials, 2005, 26, 4101-4110.	11.4	42
33	Hydrogel based tissue mimicking phantom for <i>inâ€vitro</i> ultrasound contrast agents studies. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 338-345.	3.4	42
34	Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization. Materials Science and Engineering C, 2017, 71, 335-344.	7.3	42
35	An insight on type I collagen from horse tendon for the manufacture of implantable devices. International Journal of Biological Macromolecules, 2020, 154, 291-306.	7.5	42
36	Biomimetic gradient scaffold of collagen–hydroxyapatite for osteochondral regeneration. Journal of Tissue Engineering, 2020, 11, 204173141989606.	5.5	42

ALESSANDRO SANNINO

#	Article	IF	CITATIONS
37	Preparation and characterization of cellulose-based foams via microwave curing. Interface Focus, 2014, 4, 20130053.	3.0	41
38	Enhanced electrical conductivity of collagen films through long-range aligned iron oxide nanoparticles. Journal of Colloid and Interface Science, 2017, 501, 185-191.	9.4	40
39	Osteoinductive and anti-inflammatory properties of chitosan-based scaffolds for bone regeneration. Materials Science and Engineering C, 2019, 105, 110046.	7.3	40
40	Development and characterization of celluloseâ€based hydrogels for use as dietary bulking agents. Journal of Applied Polymer Science, 2010, 115, 1438-1444.	2.6	39
41	Proliferation and Osteoblastic Differentiation of hMSCs on Cellulose-Based Hydrogels. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 302-307.	1.6	39
42	Peripheral nerve morphogenesis induced by scaffold micropatterning. Biomaterials, 2014, 35, 4035-4045.	11.4	39
43	Fabrication and Pilot In Vivo Study of a Collagen-BDDGE-Elastin Core-Shell Scaffold for Tendon Regeneration. Frontiers in Bioengineering and Biotechnology, 2016, 4, 52.	4.1	38
44	Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications. Materials Science and Engineering C, 2020, 107, 110219.	7.3	37
45	Sub―and Supramolecular Xâ€Ray Characterization of Engineered Tissues from Equine Tendon, Bovine Dermis, and Fish Skin Typeâ€I Collagen. Macromolecular Bioscience, 2020, 20, e2000017.	4.1	34
46	Full experimental modelling of a liver tissue mimicking phantom for medical ultrasound studies employing different hydrogels. Journal of Materials Science: Materials in Medicine, 2009, 20, 983-989.	3.6	32
47	Celluloseâ€based porous scaffold for bone tissue engineering applications: Assessment of h <scp>MSC</scp> proliferation and differentiation. Journal of Biomedical Materials Research - Part A, 2016, 104, 726-733.	4.0	32
48	An Overview of the Use of Equine Collagen as Emerging Material for Biomedical Applications. Journal of Functional Biomaterials, 2020, 11, 79.	4.4	32
49	In Vitro Assessment of the Antibacterial Potential of Silver Nano-Coatings on Cotton Gauzes for Prevention of Wound Infections. Materials, 2016, 9, 411.	2.9	31
50	Potential of Electrospun Poly(3-hydroxybutyrate)/Collagen Blends for Tissue Engineering Applications. Journal of Healthcare Engineering, 2018, 2018, 1-13.	1.9	29
51	Evaluation of the degree of cross-linking of cellulose-based superabsorbent hydrogels: a comparison between different techniques. Macromolecular Symposia, 2003, 200, 199-208.	0.7	28
52	Embryonic stem cell extracts improve wound healing in diabetic mice. Acta Diabetologica, 2020, 57, 883-890.	2.5	26
53	The biomaterialistâ \in Ms task: scaffold biomaterials and fabrication technologies. Joints, 2013, 01, 130-137.	1.5	26
54	Antibacterial and antifungal dressings obtained by photochemical deposition of silver nanoparticles. Journal of Applied Polymer Science, 2014, 131, .	2.6	25

4

#	Article	IF	CITATIONS
55	Bioactive chitosanâ€based scaffolds with improved properties induced by dextranâ€grafted nanoâ€maghemite and <scp>l</scp> â€arginine amino acid. Journal of Biomedical Materials Research - Part A, 2019, 107, 1244-1252.	4.0	24
56	Chitosan scaffolds for cartilage regeneration: influence of different ionic crosslinkers on biomaterial properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 936-945.	3.4	24
57	Osteochondral Repair by a Novel Interconnecting Collagen–Hydroxyapatite Substitute: A Large-Animal Study. Tissue Engineering - Part A, 2015, 21, 704-715.	3.1	23
58	A novel composite type I collagen scaffold with micropatterned porosity regulates the entrance of phagocytes in a severe model of spinal cord injury. , 2017, 105, 1040-1053.		23
59	Spectroscopic Characterization and Nanosafety of Ag-Modified Antibacterial Leather and Leatherette. Nanomaterials, 2017, 7, 203.	4.1	19
60	Fast synthesis of poly(ethylene glycol) diacrylate cryogels via UV irradiation. Materials Letters, 2018, 218, 305-308.	2.6	19
61	Investigations of Processing–Induced Structural Changes in Horse Type-I Collagen at Sub and Supramolecular Levels. Frontiers in Bioengineering and Biotechnology, 2019, 7, 203.	4.1	18
62	Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 209-221.	3.1	17
63	Exploring the effects of the crosslink density on the physicochemical properties of collagen-based scaffolds. Polymer Testing, 2021, 93, 106966.	4.8	16
64	Simplified preparation and characterization of magnetic hydroxyapatite-based nanocomposites. Materials Science and Engineering C, 2017, 76, 1166-1174.	7.3	15
65	Development of Semi- and Grafted Interpenetrating Polymer Networks Based on Poly(Ethylene Glycol) Diacrylate and Collagen. Journal of Applied Biomaterials and Functional Materials, 2014, 12, 183-192.	1.6	13
66	Development of hybrid cotton/hydrogel yarns with improved absorption properties for biomedical applications. Materials Science and Engineering C, 2016, 63, 563-569.	7.3	13
67	Mechanical stability of highly porous hydroxyapatite scaffolds during different stages of in vitro studies. Materials Letters, 2016, 185, 239-242.	2.6	13
68	Novel PHB/Olive mill wastewater residue composite based film: Thermal, mechanical and degradation properties. Journal of Environmental Chemical Engineering, 2017, 5, 6001-6007.	6.7	13
69	Aquaponics-Derived Tilapia Skin Collagen for Biomaterials Development. Polymers, 2022, 14, 1865.	4.5	13
70	Encapsulation of Lactobacillus kefiri in alginate microbeads using a double novel aerosol technique. Materials Science and Engineering C, 2017, 77, 548-555.	7.3	12
71	Analysis of the Physico-Chemical, Mechanical and Biological Properties of Crosslinked Type-I Collagen from Horse Tendon: Towards the Development of Ideal Scaffolding Material for Urethral Regeneration. Materials, 2021, 14, 7648.	2.9	11
72	Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 86, 294-304.	3.1	10

#	Article	IF	CITATIONS
73	Proteomic expression profile of injured rat peripheral nerves revealed biological networks and processes associated with nerve regeneration. Journal of Cellular Physiology, 2018, 233, 6207-6223.	4.1	9
74	Determination of absorption and structural properties of cellulose-based hydrogel via ultrasonic pulse-echo time-of-flight approach. Cellulose, 2018, 25, 4331-4343.	4.9	9
75	Assessment of physico-chemical and biological properties of sericin-collagen substrates for PNS regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 403-413.	3.4	9
76	Development and biological validation of a cyclic stretch culture system for the ex vivo engineering of tendons. International Journal of Artificial Organs, 2018, 41, 400-412.	1.4	8
77	Effect of inorganic and organic bioactive signals decoration on the biological performance of chitosan scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2018, 29, 62.	3.6	8
78	Recent advances in therapies utilizing superabsorbent hydrogel technology for weight management: A review. Obesity Science and Practice, 2022, 8, 363-370.	1.9	8
79	Poly(lactide-co-glycolide) nanoparticles embedded in a micropatterned collagen scaffold for neuronal tissue regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 359-368.	3.4	7
80	Evaluation of in Vivo Response of Three Biphasic Scaffolds for Osteochondral Tissue Regeneration in a Sheep Model. Veterinary Sciences, 2019, 6, 90.	1.7	7
81	The biomaterialist's task: scaffold biomaterials and fabrication technologies. Joints, 2013, 1, 130-7.	1.5	7
82	Smoothâ€rough asymmetric <scp>PLGA</scp> structure made of dip coating membrane and electrospun nanofibrous scaffolds meant to be used for guided tissue regeneration of periodontium. Polymer Engineering and Science, 2022, 62, 2061-2069.	3.1	7
83	Biomimetic cellulose-based superabsorbent hydrogels for treating obesity. Scientific Reports, 2021, 11, 21394.	3.3	6
84	Preparation and Characterization of Collagen/Hydroxyapatite Microsphere Composite Scaffold for Bone Regeneration. Key Engineering Materials, 0, 587, 239-244.	0.4	5
85	Microwave-induced porosity and bioactivation of chitosan-PEGDA scaffolds: morphology, mechanical properties and osteogenic differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 86-98.	2.7	5
86	Semiâ€interpenetrating polymer network cryogels based on poly(ethylene glycol) diacrylate and collagen as potential offâ€theâ€shelf platforms for cancer cell research. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1313-1326.	3.4	5
87	Genipinâ€crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization. Journal of Biomedical Materials Research - Part A, 2022, 110, 1372-1385.	4.0	5
88	Development of a Novel Hybrid Porous Scaffold for Bone Tissue Engineering: Forsterite Nanopowder Reinforced Chitosan. Key Engineering Materials, 2013, 587, 249-254.	0.4	4
89	Development of antibacterial silver treatments on <scp>HDPE</scp> nets for agriculture. Journal of Applied Polymer Science, 2015, 132, .	2.6	4
90	Antibacterial silver treatments on polymeric membranes for fouling control and disinfection in water filtration. Journal of Applied Polymer Science, 2016, 133, .	2.6	4

Alessandro Sannino

#	Article	IF	CITATIONS
91	Investigating the Structure-Related Properties of Cellulose-Based Superabsorbent Hydrogels. , 2019, , .		4
92	Acrylic-based hydrogel phantom forin vitroultrasound contrast agent characterization. Virtual and Physical Prototyping, 2007, 2, 191-196.	10.4	3
93	Development and Mechanical Characterization of a Collagen/Hydroxyapatite Bilayered Scaffold for Ostechondral Defect Replacement. Key Engineering Materials, 0, 493-494, 890-895.	0.4	3
94	Evidence of Modular Responsiveness of Osteoblast-Like Cells Exposed to Hydroxyapatite-Containing Magnetic Nanostructures. Biology, 2020, 9, 357.	2.8	3
95	Influence of the Precipitation Temperature on Properties of Nanohydroxyapatite Powder for the Fabrication of Highly Porous Bone Scaffolds. Key Engineering Materials, 2013, 587, 27-32.	0.4	2
96	WAXS and SAXS Investigation of Collagen-Rich Diet Effect on Multiscale Arrangement of Type I Collagen in Tilapia Skin Fed in Aquaponics Plant. Crystals, 2022, 12, 700.	2.2	2
97	Mechanical Performance and <i>In Vitro</i> Studies of Hydroxyapatite/Wollastonite Scaffold for Bone Tissue Engineering. Key Engineering Materials, 0, 493-494, 855-860.	0.4	1
98	Graphene reinforced Chitosan-Cinnamaldehyde derivatives films: antifungal activity and mechanical properties. , 2015, , .		1
99	Nonconventional Routes to Silver Nanoantimicrobials. , 2015, , 87-105.		1
100	Progress and Perspectives in the Management of Wound Infections. , 2016, , .		1
101	Design of Antibody-Functionalized Polymeric Membranes for the Immunoisolation of Pancreatic Islets. Applied Sciences (Switzerland), 2020, 10, 6056.	2.5	1
102	Regenerative Medicine as an Industry. , 2014, , 969-976.		0
103	Rapid Prototyping of hydroxyapatite polymer based nanocomposites for bone tissue engineering. , 2015,		0