
Rajat Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1896844/publications.pdf Version: 2024-02-01

PAIAT CUDTA

#	Article	IF	CITATIONS
1	Enabling Sustainable Lifestyles in New Urban Areas: Evaluation of an Eco-Development Case Study in the UK. Sustainability, 2022, 14, 4143.	3.2	0
2	Building performance evaluation of low-energy dwellings with and without smart thermostats. Building Services Engineering Research and Technology, 2022, 43, 297-318.	1.8	1
3	Developing Indoor Temperature Profiles of Albanian Homes for Baseline Energy Models in Relation to Contextual Factors. Energies, 2022, 15, 3668.	3.1	1
4	Integrated Testing of Building Fabric Thermal Performance for Calibration of Energy Models of Three Low-Energy Dwellings in the UK. Sustainability, 2021, 13, 2784.	3.2	2
5	Examining the magnitude and perception of summertime overheating in London care homes. Building Services Engineering Research and Technology, 2021, 42, 653-675.	1.8	7
6	In-use energy and carbon performance of a true zero carbon housing development in England. Science and Technology for the Built Environment, 2021, 27, 1425-1439.	1.7	3
7	What is â€ [~] local' about Smart Local Energy Systems? Emerging stakeholder geographies of decentralised energy in the United Kingdom. Energy Research and Social Science, 2021, 80, 102182.	6.4	26
8	Monitoring and modelling the risk of summertime overheating and passive solutions to avoid active cooling in London care homes. Energy and Buildings, 2021, 252, 111418.	6.7	20
9	Indoor Overheating, Climate Resilience, and Adaptation of Care Settings. , 2021, , 1-21.		0
10	Indoor Overheating, Climate Resilience, and Adaptation of Care Settings. , 2021, , 779-799.		0
11	Defining the link between indoor environment and workplace productivity in a modern UK office building. Architectural Science Review, 2020, 63, 248-261.	2.2	6
12	Investigating the relationship between indoor environment and workplace productivity in naturally and mechanically ventilated office environments. Building Services Engineering Research and Technology, 2020, 41, 280-304.	1.8	12
13	Domestic energy mapping to enable area-based whole house retrofits. Energy and Buildings, 2020, 229, 110514.	6.7	3
14	Comparative evaluation of measured and perceived indoor environmental conditions in naturally and mechanically ventilated office environments. Building Simulation, 2020, 13, 1021-1042.	5.6	3
15	Measurement and Verification of Zero Energy Settlements: Lessons Learned from Four Pilot Cases in Europe. Sustainability, 2020, 12, 9783.	3.2	6
16	Assessing the Magnitude and Likely Causes of Summertime Overheating in Modern Flats in UK. Energies, 2020, 13, 5202.	3.1	12
17	Review of studies on thermal comfort in Indian residential buildings. Science and Technology for the Built Environment, 2020, 26, 727-748.	1.7	30
18	Energy and Environmental performance of a green certified office building in the hot dry climate of India. IOP Conference Series: Earth and Environmental Science, 2019, 329, 012028.	0.3	0

Rajat Gupta

#	Article	IF	CITATIONS
19	Performance evaluation of a certified green-rated housing development in the warm humid climate of India. IOP Conference Series: Earth and Environmental Science, 2019, 294, 012085.	0.3	Ο
20	Meta-analysis of summertime indoor temperatures in new-build, retrofitted, and existing UK dwellings. Science and Technology for the Built Environment, 2019, 25, 1212-1225.	1.7	11
21	Achieving energy resilience through smart storage of solar electricity at dwelling and community level. Energy and Buildings, 2019, 195, 1-15.	6.7	41
22	Developing a new framework to bring consistency and flexibility in evaluating actual building performance. International Journal of Building Pathology and Adaptation, 2019, 38, 228-255.	1.3	5
23	Customized performance evaluation approach for Indian green buildings. Building Research and Information, 2019, 47, 56-74.	3.9	20
24	Exploring innovative community and household energy feedback approaches. Building Research and Information, 2018, 46, 284-299.	3.9	20
25	Assessing energy use and overheating risk in net zero energy dwellings in UK. Energy and Buildings, 2018, 158, 897-905.	6.7	38
26	Modeling and Mapping Domestic Energy Refurbishment Measures on a Community Scale. , 2018, , 661-676.		0
27	Evaluating the influence of building fabric, services and occupant related factors on the actual performance of low energy social housing dwellings in UK. Energy and Buildings, 2018, 174, 548-562.	6.7	32
28	Magnitude and extent of building fabric thermal performance gap in UK low energy housing. Applied Energy, 2018, 222, 673-686.	10.1	39
29	Meta-analysis of indoor temperatures in new-build housing. Building Research and Information, 2017, 45, 19-39.	3.9	19
30	Local Energy Mapping Using Publicly Available Data for Urban Energy Retrofit. , 2017, , 207-219.		1
31	Overheating in care settings: magnitude, causes, preparedness and remedies. Building Research and Information, 2017, 45, 83-101.	3.9	32
32	Development of Net Zero Energy Settlements Using Advanced Energy Technologies. Procedia Engineering, 2017, 180, 1388-1401.	1.2	24
33	Care provision fit for a warming climate. Architectural Science Review, 2017, 60, 275-285.	2.2	10
34	Empirical assessment of indoor air quality and overheating in low-carbon social housing dwellings in England, UK. Advances in Building Energy Research, 2016, 10, 46-68.	2.3	39
35	Do deep low carbon domestic retrofits actually work?. Energy and Buildings, 2016, 129, 330-343.	6.7	46
36	Empirical evaluation of the energy and environmental performance of a sustainably-designed but under-utilised institutional building in the UK. Energy and Buildings, 2016, 128, 68-80.	6.7	27

Rajat Gupta

#	Article	IF	CITATIONS
37	Do Deep Low Carbon Retrofits Actually Work?. Energy Procedia, 2015, 78, 919-924.	1.8	6
38	Cooling the UK housing stock post-2050s. Building Services Engineering Research and Technology, 2015, 36, 196-220.	1.8	31
39	Intent and outcomes from the Retrofit for the Future programme: key lessons. Building Research and Information, 2015, 43, 435-451.	3.9	45
40	Impacts of community-led energy retrofitting of owner-occupied dwellings. Building Research and Information, 2014, 42, 446-461.	3.9	38
41	Possible effects of future domestic heat pump installations on the UK energy supply. Energy and Buildings, 2014, 84, 94-110.	6.7	18
42	Unravelling the unintended consequences of home energy improvements. International Journal of Energy Sector Management, 2014, 8, 506-526.	2.3	11
43	Retrofitting England's suburbs to adapt to climate change. Building Research and Information, 2013, 41, 517-531.	3.9	31
44	Development and application of a domestic heat pump model for estimating CO2 emissions reductions from domestic space heating, hot water and potential cooling demand in the future. Energy and Buildings, 2013, 60, 60-74.	6.7	19
45	Evaluative application of UKCP09â€based downscaled future weather years to simulate overheating risk in typical English homes. Structural Survey, 2013, 31, 231-252.	1.0	1
46	Integrated suburban neighbourhood adaptation due to climate change. Structural Survey, 2013, 31, 301-313.	1.0	6
47	Preventing the overheating of English suburban homes in a warming climate. Building Research and Information, 2013, 41, 281-300.	3.9	65
48	Understanding the Gap between â€~as Designed' and â€~as Built' Performance of a New Low Carbon Hou Development in UK. Smart Innovation, Systems and Technologies, 2013, , 567-580.	ising 0.6	7
49	Appraisal of UK funding frameworks for energy research in housing. Building Research and Information, 2012, 40, 446-460.	3.9	9
50	Using UK climate change projections to adapt existing English homes for a warming climate. Building and Environment, 2012, 55, 20-42.	6.9	113
51	Adapting UK suburban neighbourhoods and dwellings for a changing climate. Advances in Building Energy Research, 2011, 5, 81-108.	2.3	11
52	Understanding occupants: feedback techniques for large-scale low-carbon domestic refurbishments. Building Research and Information, 2010, 38, 530-548.	3.9	74
53	Reducing Carbon Emissions From Oxford City: Plans and Tools. , 2008, , 491-505.		3