Limin Yang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/189667/limin-yang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 28 923 11 h-index g-index citations papers 28 1,039 4.01 5.2 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
28	A colorimetric aptasensing assay with adjustable color mutation points for threshold-readout detection of carcinoembryonic antigen. <i>Sensors and Actuators B: Chemical</i> , 2022 , 350, 130857	8.5	3
27	A syringe-aided apta-nanosensing method for colorimetric determination of acetamiprid. <i>Analytica Chimica Acta</i> , 2021 , 1150, 238118	6.6	3
26	Enhanced Artificial Enzyme Activities on the Reconstructed Sawtoothlike Nanofacets of Pure and Pr-Doped Ceria Nanocubes. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 38061-38073	9.5	O
25	Photocatalytically renewable peptide-based electrochemical impedance method for sensing lipopolysaccharide. <i>Mikrochimica Acta</i> , 2020 , 187, 349	5.8	4
24	From DNA to Nerve Agents I The Biomimetic Catalysts for the Hydrolysis of Phosphate Esters. <i>ChemistrySelect</i> , 2020 , 5, 9492-9516	1.8	7
23	An enzyme inhibition-based lab-in-a-syringe device for point-of-need determination of pesticides. <i>Analyst, The</i> , 2020 , 145, 3958-3966	5	4
22	An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles. <i>Mikrochimica Acta</i> , 2019 , 186, 308	5.8	23
21	Selective oxidation of glycerol on morphology controlled ceria nanomaterials. <i>Catalysis Science and Technology</i> , 2019 , 9, 2328-2334	5.5	17
20	Determination of Organophosphorus Pesticides in Fortified Tomatoes by Fluorescence Quenching of Cadmium Selenium Zinc Sulfide Quantum Dots. <i>Analytical Letters</i> , 2019 , 52, 729-744	2.2	6
19	A non-enzymatic nanoceria electrode for non-invasive glucose monitoring. <i>Analytical Methods</i> , 2018 , 10, 2151-2159	3.2	16
18	Fabrication of two-dimensional (2D) ordered microsphere aligned by supramolecular self-assembly of Formyl-azobenzene and dipeptide. <i>Journal of Colloid and Interface Science</i> , 2018 , 514, 491-495	9.3	8
17	Molecular weight impact on the mechanical forces between hyaluronan and its receptor. <i>Carbohydrate Polymers</i> , 2018 , 197, 326-336	10.3	10
16	The Impact of Ionic Liquid and Nanoparticles on Stabilizing Foam for Enhanced Oil Recovery. <i>ChemistrySelect</i> , 2018 , 3, 12461-12468	1.8	3
15	Double-decrease of the fluorescence of CdSe/ZnS quantum dots for the detection of zinc(II) dimethyldithiocarbamate (ziram) based on its interaction with gold nanoparticles. <i>Mikrochimica Acta</i> , 2018 , 185, 472	5.8	16
14	Improved Oxidase Mimetic Activity by Praseodymium Incorporation into Ceria Nanocubes. <i>ACS Applied Materials & Discorporation (Materials & Dis</i>	9.5	48
13	HyaluronanEyrosinegold nanoparticles as an enzyme-free colorimetric probe for the detection of phosphorothiolate pesticides. <i>Analytical Methods</i> , 2017 , 9, 6139-6147	3.2	8
12	Swelling induced regeneration of TiO2-impregnated chitosan adsorbents under visible light. <i>Carbohydrate Polymers</i> , 2016 , 140, 433-41	10.3	11

LIST OF PUBLICATIONS

11	and a surface force balance. <i>Soft Matter</i> , 2015 , 11, 7276-87	3.6	3
10	Properties of multi-phase foam and its flow behavior in porous media. <i>RSC Advances</i> , 2015 , 5, 67676-67	76 <u>8</u> .9	22
9	Conversion of inhibition biosensing to substrate-like biosensing for quinalphos selective detection. <i>Analytical Chemistry</i> , 2015 , 87, 5270-7	7.8	15
8	Fabrication of ten-fold photonic quasicrystalline structures. <i>AIP Advances</i> , 2015 , 5, 057108	1.5	4
7	Utilization of Surfactant-Stabilized Foam for Enhanced Oil Recovery by Adding Nanoparticles. <i>Energy & Disperson Burgers</i> (2014), 28, 2384-2394	4.1	238
6	Real-time analysis of porphyrin J-aggregation on a plant-esterase-functionalized surface using quartz crystal microbalance with dissipation monitoring. <i>Langmuir</i> , 2014 , 30, 9962-71	4	4
5	Role of tryptophan in the active site of plant esterase: chemical modification and fluorometric studies. <i>Applied Biochemistry and Biotechnology</i> , 2013 , 170, 909-24	3.2	5
4	Interactions of hyaluronan layers with similarly charged surfaces: the effect of divalent cations. <i>Langmuir</i> , 2013 , 29, 12194-202	4	6
3	Monitoring the adulteration of milk with melamine: a visualised sensor array approach. <i>Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment</i> , 2013 , 30, 786-95	3.2	11
2	Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg(2+) sensor. <i>Analyst, The,</i> 2010 , 135, 1406-10	5	386
1	Purification of plant-esterase in PEG1000/NaH2PO4 aqueous two-phase system by a two-step extraction. <i>Process Biochemistry</i> , 2010 , 45, 1664-1671	4.8	42