
Henrik Ahlenius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1896658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcription factor-based direct conversion of human fibroblasts to functional astrocytes. Stem Cell Reports, 2022, 17, 1620-1635.	4.8	10
2	Transcription Factor Programming of Human Pluripotent Stem Cells to Functionally Mature Astrocytes for Monocultures and Cocultures with Neurons. Methods in Molecular Biology, 2021, 2352, 133-148.	0.9	5
3	CRISPR/Cas9 Genome Engineering in Human Pluripotent Stem Cells for Modeling of Neurological Disorders. Methods in Molecular Biology, 2021, 2352, 237-251.	0.9	2
4	Transcription Factor-Based Strategies to Generate Neural Cell Types from Human Pluripotent Stem Cells. Cellular Reprogramming, 2021, 23, 206-220.	0.9	7
5	Mitochondrial Dysfunction and Calcium Dysregulation in Leigh Syndrome Induced Pluripotent Stem Cell Derived Neurons. International Journal of Molecular Sciences, 2020, 21, 3191.	4.1	19
6	Loss of <i>Cxcr5</i> alters neuroblast proliferation and migration in the aged brain. Stem Cells, 2020, 38, 1175-1187.	3.2	6
7	Neuronal and Astrocytic Differentiation from Sanfilippo C Syndrome iPSCs for Disease Modeling and Drug Development. Journal of Clinical Medicine, 2020, 9, 644.	2.4	10
8	In Vitro Functional Characterization of Human Neurons and Astrocytes Using Calcium Imaging and Electrophysiology. Methods in Molecular Biology, 2019, 1919, 73-88.	0.9	11
9	Transcription factor programming of human ES cells generates functional neurons expressing both upper and deep layer cortical markers. PLoS ONE, 2018, 13, e0204688.	2.5	13
10	Groucho related gene 5 (GRG5) is involved in embryonic and neural stem cell state decisions. Scientific Reports, 2018, 8, 13790.	3.3	9
11	Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Nature Methods, 2018, 15, 693-696.	19.0	146
12	Generation of pure GABAergic neurons by transcription factor programming. Nature Methods, 2017, 14, 621-628.	19.0	265
13	Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature, 2017, 544, 245-249.	27.8	180
14	Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks. Stem Cell Research and Therapy, 2017, 8, 207.	5.5	45
15	FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8514-8519.	7.1	24
16	Monocyte-Derived Macrophages Contribute to Spontaneous Long-Term Functional Recovery after Stroke in Mice. Journal of Neuroscience, 2016, 36, 4182-4195.	3.6	277
17	MafA-Controlled Nicotinic Receptor Expression Is Essential for Insulin Secretion and Is Impaired in Patients with Type 2 Diabetes. Cell Reports, 2016, 14, 1991-2002.	6.4	27
18	Inflammation without neuronal death triggers striatal neurogenesis comparable to stroke. Neurobiology of Disease, 2015, 83, 1-15.	4.4	47

HENRIK AHLENIUS

#	Article	IF	CITATIONS
19	Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1. Stem Cell Reports, 2014, 3, 282-296.	4.8	312
20	Generation of oligodendroglial cells by direct lineage conversion. Nature Biotechnology, 2013, 31, 434-439.	17.5	274
21	Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells. Neuron, 2013, 78, 785-798.	8.1	1,209
22	Chinese and Westerners Respond Differently to the Trolley Dilemmas. Journal of Cognition and Culture, 2012, 12, 195-201.	0.4	43
23	Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2527-2532.	7.1	414
24	Embryonic Stem Cellâ€Đerived Neural Stem Cells Fuse with Microglia and Mature Neurons. Stem Cells, 2012, 30, 2657-2671.	3.2	38
25	Human-Induced Pluripotent Stem Cells form Functional Neurons and Improve Recovery After Grafting in Stroke-Damaged Brain. Stem Cells, 2012, 30, 1120-1133.	3.2	264
26	Adaptor Protein LNK Is a Negative Regulator of Brain Neural Stem Cell Proliferation after Stroke. Journal of Neuroscience, 2012, 32, 5151-5164.	3.6	11
27	Isolation and Generation of Neurosphere Cultures from Embryonic and Adult Mouse Brain. Methods in Molecular Biology, 2010, 633, 241-252.	0.9	40
28	Neural Stem and Progenitor Cells Retain Their Potential for Proliferation and Differentiation into Functional Neurons Despite Lower Number in Aged Brain. Journal of Neuroscience, 2009, 29, 4408-4419.	3.6	188
29	Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia, 2009, 57, 136-152.	4.9	70
30	Neurobiology of Postischemic Recuperation in the Aged Mammalian Brain. , 2009, , 403-451.		0
31	Suppression of Stroke-Induced Progenitor Proliferation in Adult Subventricular Zone by Tumor Necrosis Factor Receptor 1. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1574-1587.	4.3	94
32	Critical role of FLT3 ligand in IL-7 receptor–independent T lymphopoiesis and regulation of lymphoid-primed multipotent progenitors. Blood, 2007, 110, 2955-2964.	1.4	66
33	Intracerebral Infusion of Glial Cell Line-Derived Neurotrophic Factor Promotes Striatal Neurogenesis After Stroke in Adult Rats. Stroke, 2006, 37, 2361-2367.	2.0	188
34	Persistent Production of Neurons from Adult Brain Stem Cells During Recovery after Stroke. Stem Cells, 2006, 24, 739-747.	3.2	658
35	Tumor Necrosis Factor Receptor 1 Is a Negative Regulator of Progenitor Proliferation in Adult Hippocampal Neurogenesis. Journal of Neuroscience, 2006, 26, 9703-9712.	3.6	434
36	Cell intrinsic alterations underlie hematopoietic stem cell aging. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9194-9199.	7.1	972

#	Article	IF	CITATIONS
37	Complementary Signaling through flt3 and Interleukin-7 Receptor α Is Indispensable for Fetal and Adult B Cell Genesis. Journal of Experimental Medicine, 2003, 198, 1495-1506.	8.5	157
38	Rapid and Efficient Induction of Functional Astrocytes from Human Pluripotent Stem Cells. Protocol Exchange, 0, , .	0.3	6