Nicolas Dauchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1896495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poroelastic lamellar metamaterial for sound attenuation in a rectangular duct. Applied Acoustics, 2021, 176, 107862.	3.3	8
2	Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study. Additive Manufacturing, 2020, 36, 101564.	3.0	26
3	Influence of the multi-component electrical feed of air-core industrial reactors on their sound radiation. Acta Acustica, 2020, 4, 14.	1.0	4
4	Multiphysics model for predicting the sound radiation of a single-layer air-core coil. Applied Acoustics, 2019, 146, 327-333.	3.3	3
5	A transverse isotropic equivalent fluid model combining both limp and rigid frame behaviors for fibrous materials. Journal of the Acoustical Society of America, 2018, 143, 2089-2098.	1.1	3
6	Additional Sound Absorption Within a Poroelastic Lamella Network Under Oblique Incidence. Acta Acustica United With Acustica, 2018, 104, 211-219.	0.8	4
7	How reproducible are methods to measure the dynamic viscoelastic properties of poroelastic media?. Journal of Sound and Vibration, 2018, 428, 26-43.	3.9	20
8	Acoustic characterization of a porous absorber based on recycled sugarcane wastes. Applied Acoustics, 2017, 120, 90-97.	3.3	26
9	Buckling Instability of a Violin Bow. Acta Acustica United With Acustica, 2017, 103, 803-811.	0.8	0
10	Effectiveness of nonporous windscreens for infrasonic measurements. Journal of the Acoustical Society of America, 2016, 139, 3177-3181.	1.1	3
11	A homogenization method used to predict the performance of silencers containing parallel splitters. Journal of the Acoustical Society of America, 2015, 137, 3221-3231.	1.1	8
12	Static model of a violin bow: Influence of camber and hair tension on mechanical behavior. Journal of the Acoustical Society of America, 2012, 131, 773-782.	1.1	8
13	A Predictive Model for the Adjustment of Violin Bows. Acta Acustica United With Acustica, 2012, 98, 640-650.	0.8	3
14	Ironless transducer for measuring the mechanical properties of porous materials. Review of Scientific Instruments, 2010, 81, 055101.	1.3	6
15	A Free Interface CMS Technique to the Resolution of Coupled Problem Involving Porous Materials, Application to a Monodimensional Problem. Acta Acustica United With Acustica, 2010, 96, 247-257.	0.8	12
16	A Frequency Independent Criterion for Describing Sound Absorbing Materials by a Limp Frame Model. Acta Acustica United With Acustica, 2009, 95, 178-181.	0.8	11
17	Enhanced Biot's Finite Element Displacement Formulation for Porous Materials and Original Resolution Methods Based on Normal Modes. Acta Acustica United With Acustica, 2009, 95, 527-538.	0.8	22
18	On the use of a loudspeaker for measuring the viscoelastic properties of sound absorbing materials. Journal of the Acoustical Society of America, 2008, 124, EL335-EL340.	1.1	9

NICOLAS DAUCHEZ

#	Article	IF	CITATIONS
19	Validity of the limp model for porous materials: A criterion based on the Biot theory. Journal of the Acoustical Society of America, 2007, 122, 2038-2048.	1.1	46
20	Porous layer impedance applied to a moving wall: Application to the radiation of a covered piston. Journal of the Acoustical Society of America, 2007, 121, 206-213.	1.1	15
21	Convergence of poroelastic finite elements based on Biot displacement formulation. Journal of the Acoustical Society of America, 2001, 109, 33-40.	1.1	51
22	Vibroacoustic behavior of a porous layer bonded onto a plate. , 1998, , .		1
23	Prediction of Acoustic Properties of Multilayer Structures- Some Examples of Applications. , 0, , 745-756.		0