Junrong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1896244/publications.pdf

Version: 2024-02-01

567281 752698 20 739 15 20 citations h-index g-index papers 21 21 21 1068 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Potential adverse effects of nanoparticles on the reproductive system. International Journal of Nanomedicine, 2018, Volume 13, 8487-8506.	6.7	139
2	Superhydrophobic/Superhydrophilic Janus Fabrics Reducing Blood Loss. Advanced Healthcare Materials, 2018, 7, e1701086.	7.6	94
3	Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways. International Journal of Nanomedicine, 2017, Volume 12, 5501-5510.	6.7	70
4	Neuroinflammation is induced by tongue-instilled ZnO nanoparticles via the Ca2+-dependent NF-κB and MAPK pathways. Particle and Fibre Toxicology, 2018, 15, 39.	6.2	61
5	Insights into the angiogenic effects of nanomaterials: mechanisms involved and potential applications. Journal of Nanobiotechnology, 2020, 18, 9.	9.1	46
6	Nanomaterial-mediated autophagy: coexisting hazard and health benefits in biomedicine. Particle and Fibre Toxicology, 2020, 17, 53.	6.2	45
7	GO-based antibacterial composites: Application and design strategies. Advanced Drug Delivery Reviews, 2021, 178, 113967.	13.7	41
8	Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies. Journal of Nanobiotechnology, 2021, 19, 211.	9.1	36
9	Key Role of Microtubule and Its Acetylation in a Zinc Oxide Nanoparticle–Mediated Lysosome–Autophagy System. Small, 2019, 15, e1901073.	10.0	34
10	The Effect of Microteaching Combined with the BOPPPS Model on Dental Materials Education for Predoctoral Dental Students. Journal of Dental Education, 2019, 83, 567-574.	1,2	32
11	Oxidation of Reduced Graphene Oxide <i>via</i> Cellular Redox Signaling Modulates Actin-Mediated Neurotransmission. ACS Nano, 2020, 14, 3059-3074.	14.6	27
12	ZnO NPs delay the recovery of psoriasis-like skin lesions through promoting nuclear translocation of p-NFκB p65 and cysteine deficiency in keratinocytes. Journal of Hazardous Materials, 2021, 410, 124566.	12.4	23
13	Understanding the interactions between inorganic-based nanomaterials and biological membranes. Advanced Drug Delivery Reviews, 2021, 175, 113820.	13.7	23
14	Effects of carbon-based nanomaterials on vascular endothelia under physiological and pathological conditions: interactions, mechanisms and potential therapeutic applications. Journal of Controlled Release, 2021, 330, 945-962.	9.9	19
15	Current understanding of the toxicological risk posed to the fetus following maternal exposure to nanoparticles. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 1251-1263.	3.3	16
16	Dual effects of JNK activation in blood-milk barrier damage induced by zinc oxide nanoparticles. Journal of Hazardous Materials, 2020, 399, 122809.	12.4	9
17	Electrochemically derived nanographene oxide activates endothelial tip cells and promotes angiogenesis by binding endogenous lysophosphatidic acid. Bioactive Materials, 2022, 9, 92-104.	15.6	9
18	Comparing Integrated and Disciplinary Clinical Training Patterns for Dental Interns: Advantages, Disadvantages, and Effect on Students' Selfâ€Confidence. Journal of Dental Education, 2016, 80, 318-327.	1.2	8

#	Article	IF	CITATIONS
19	Comparing Integrated and Disciplinary Clinical Training Patterns for Dental Interns: Advantages, Disadvantages, and Effect on Students' Self-Confidence. Journal of Dental Education, 2016, 80, 318-27.	1.2	4
20	Improvement of synaptic plasticity by nanoparticles and the related mechanisms: Applications and prospects. Journal of Controlled Release, 2022, 347, 143-163.	9.9	3