Panpan Gai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1895981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured material-based biofuel cells: recent advances and future prospects. Chemical Society Reviews, 2017, 46, 1545-1564.	38.1	258
2	Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. Journal of Materials Chemistry A, 2013, 1, 12587.	10.3	138
3	Enzymatic Biofuel-Cell-Based Self-Powered Biosensor Integrated with DNA Amplification Strategy for Ultrasensitive Detection of Single-Nucleotide Polymorphism. Analytical Chemistry, 2019, 91, 8697-8704.	6.5	135
4	Highly sensitive and stable self-powered biosensing for exosomes based on dual metal-organic frameworks nanocarriers. Biosensors and Bioelectronics, 2021, 176, 112907.	10.1	130
5	Integration of Biofuel Cell-Based Self-Powered Biosensing and Homogeneous Electrochemical Strategy for Ultrasensitive and Easy-To-Use Bioassays of MicroRNA. ACS Applied Materials & Interfaces, 2018, 10, 9325-9331.	8.0	113
6	Equipment-free and visual detection of multiple biomarkers via an aggregation induced emission luminogen-based paper biosensor. Biosensors and Bioelectronics, 2020, 165, 112336.	10.1	113
7	Solarâ€Powered Organic Semiconductor–Bacteria Biohybrids for CO ₂ Reduction into Acetic Acid. Angewandte Chemie - International Edition, 2020, 59, 7224-7229.	13.8	111
8	Ultrasensitive Ratiometric Homogeneous Electrochemical MicroRNA Biosensing via Target-Triggered Ru(III) Release and Redox Recycling. Analytical Chemistry, 2017, 89, 12293-12298.	6.5	108
9	Ultrasensitive Self-Powered Aptasensor Based on Enzyme Biofuel Cell and DNA Bioconjugate: A Facile and Powerful Tool for Antibiotic Residue Detection. Analytical Chemistry, 2017, 89, 2163-2169.	6.5	107
10	Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy. Biosensors and Bioelectronics, 2016, 82, 49-54.	10.1	100
11	Nitrogenâ€Enriched Conjugated Polymer Enabled Metalâ€Free Carbon Nanozymes with Efficient Oxidaseâ€Like Activity. Small, 2022, 18, e2104993.	10.0	81
12	Label-Free and Ultrasensitive Biomolecule Detection Based on Aggregation Induced Emission Fluorogen via Target-Triggered Hemin/G-Quadruplex-Catalyzed Oxidation Reaction. ACS Applied Materials & Interfaces, 2018, 10, 4561-4568.	8.0	76
13	Enzymatic Fuel Cell-Based Self-Powered Homogeneous Immunosensing Platform via Target-Induced Glucose Release: An Appealing Alternative Strategy for Turn-On Melamine Assay. ACS Applied Materials & Interfaces, 2017, 9, 35721-35728.	8.0	67
14	Design of an enzymatic biofuel cell with large power output. Journal of Materials Chemistry A, 2015, 3, 11511-11516.	10.3	60
15	Photo-Assisted Robust Anti-Interference Self-Powered Biosensing of MicroRNA Based on Pt–S Bonds and the Inorganic–Organic Hybridization Strategy. Analytical Chemistry, 2022, 94, 1654-1660.	6.5	52
16	A nitrogen-doped graphene/gold nanoparticle/formate dehydrogenase bioanode for high power output membrane-less formic acid/O ₂ biofuel cells. Analyst, The, 2015, 140, 1822-1826.	3.5	39
17	Ultrasensitive self-powered cytosensors based on exogenous redox-free enzyme biofuel cells as point-of-care tools for early cancer diagnosis. Chemical Communications, 2015, 51, 16763-16766.	4.1	36
18	A ternary hybrid of carbon nanotubes/graphitic carbon nitride nanosheets/gold nanoparticles used as robust substrate electrodes in enzyme biofuel cells. Chemical Communications, 2015, 51, 14735-14738.	4.1	34

Panpan Gai

#	Article	IF	CITATIONS
19	Light-driven self-powered biosensor for ultrasensitive organophosphate pesticide detection <i>via</i> integration of the conjugated polymer-sensitized CdS and enzyme inhibition strategy. Journal of Materials Chemistry B, 2018, 6, 6842-6847.	5.8	34
20	Graphene/Au composites as an anode modifier for improving electricity generation in Shewanella-inoculated microbial fuel cells. Analytical Methods, 2015, 7, 4640-4644.	2.7	33
21	Conductive Polymer–Exoelectrogen Hybrid Bioelectrode with Improved Biofilm Formation and Extracellular Electron Transport. Advanced Electronic Materials, 2019, 5, 1900320.	5.1	33
22	An"ON–OFF―switchable power output of enzymatic biofuel cell controlled by thermal-sensitive polymer. Biosensors and Bioelectronics, 2015, 74, 142-149.	10.1	32
23	Self-Powered Biosensing Platform Based on "Signal-On―Enzymatic Biofuel Cell for DNA Methyltransferase Activity Analysis and Inhibitor Screening. Analytical Chemistry, 2020, 92, 5426-5430.	6.5	32
24	Photo-driven self-powered biosensor for ultrasensitive microRNA detection <i>via</i> DNA conformation-controlled co-sensitization behavior. Chemical Communications, 2020, 56, 7116-7119.	4.1	26
25	Construction of biofuel cells-based self-powered biosensors via design of nanocatalytic system. Nano Energy, 2022, 93, 106806.	16.0	26
26	Laser-Scribed <i>N</i> -Doped Graphene for Integrated Flexible Enzymatic Biofuel Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 12437-12442.	6.7	25
27	Glucose Dehydrogenase-like Nanozyme Based on Black Phosphorus Nanosheets for High-Performance Biofuel Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 16549-16554.	6.7	23
28	Self-Photocatalysis Boosted Electrochemiluminescence Signal Amplification via In Situ Generation of the Coreactant. Analytical Chemistry, 2021, 93, 12441-12446.	6.5	21
29	Conjugated Polymer Enhanced Photoelectric Response of Self-Circulating Photosynthetic Bioelectrochemical Cell. ACS Applied Materials & Interfaces, 2019, 11, 38993-39000.	8.0	19
30	A Fe ₃ O ₄ –carbon nanofiber/gold nanoparticle hybrid for enzymatic biofuel cells with larger power output. Journal of Materials Chemistry A, 2017, 5, 11026-11031.	10.3	18
31	Unique quenching of fluorescent copper nanoclusters based on target-induced oxidation effect: a simple, label-free, highly sensitive and specific bleomycin assay. RSC Advances, 2016, 6, 76679-76683.	3.6	12
32	Biofuel Cell-Driven Robust Electrochemiluminescence Biosensing Platform. Analytical Chemistry, 2021, 93, 11745-11750.	6.5	12
33	Solarâ€Powered Organic Semiconductor–Bacteria Biohybrids for CO 2 Reduction into Acetic Acid. Angewandte Chemie, 2020, 132, 7291-7296.	2.0	10
34	Triplex DNA formation-mediated strand displacement reaction for highly sensitive fluorescent detection of melamine. Talanta, 2018, 185, 352-358.	5.5	9
35	Target-induced diffusivity enhancement for rapid and highly sensitive homogeneous electrochemical detection of BLM in human serum. Talanta, 2018, 190, 492-497.	5.5	9
36	Anode-Driven Controlled Release of Cathodic Fuel via pH Response for Smart Enzymatic Biofuel Cell. IScience, 2020, 23, 101133.	4.1	9

#	Article	IF	CITATIONS
37	Biohybrid Cells for Photoelectrochemical Conversion Based on the HCOO [–] –CO ₂ Circulation Approach. ACS Applied Bio Materials, 2020, 3, 8069-8074.	4.6	6

Enzymatic Biofuel Cells for Self-Powered Electrochemical Sensors. , 2021, , 271-297.

0