Barsha Jain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1895902/publications.pdf

Version: 2024-02-01

1039880 996849 25 247 9 15 citations h-index g-index papers 25 25 25 184 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Full-Color InGaN/AlGaN Nanowire Micro Light-Emitting Diodes Grown by Molecular Beam Epitaxy: A Promising Candidate for Next Generation Micro Displays. Micromachines, 2019, 10, 492.	1.4	51
2	High performance electron blocking layer-free InGaN/GaN nanowire white-light-emitting diodes. Optics Express, 2020, 28, 665.	1.7	35
3	Epitaxial Growth and Characterization of AllnN-Based Core-Shell Nanowire Light Emitting Diodes Operating in the Ultraviolet Spectrum. Scientific Reports, 2020, 10, 2547.	1.6	23
4	A novel <scp><i>i>β</i>àâ€Ga₂O₃ HEMT</scp> with <scp><i>f</i>_T</scp> of 166 <scp>GHz</scp> and Xâ€band <scp><i>P</i>_{OUT}</scp> of 2.91 W/mm. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2021, 34, .	1.2	20
5	Improving carrier transport in AlGaN deep-ultraviolet light-emitting diodes using a strip-in-a-barrier structure. Applied Optics, 2020, 59, 5276.	0.9	20
6	Enhancing the light extraction efficiency of AllnN nanowire ultraviolet light-emitting diodes with photonic crystal structures. Optics Express, 2020, 28, 22908.	1.7	14
7	Numerical investigation on the device performance of electron blocking layer free AllnN nanowire deep ultraviolet light-emitting diodes. Optical Materials Express, 2020, 10, 472.	1.6	12
8	High-performance electron-blocking-layer-free deep ultraviolet light-emitting diodes implementing a strip-in-a-barrier structure. Optics Letters, 2020, 45, 5125.	1.7	11
9	Single and doubleâ€gate based AlGaN/GaN MOSâ€HEMTs for the design of lowâ€noise amplifiers: a comparative study. IET Circuits, Devices and Systems, 2020, 14, 1018-1025.	0.9	11
10	Multilevel Resistive Switching in Hf-Based RRAM. ECS Transactions, 2019, 89, 39-44.	0.3	10
11	Enhanced hole transport in AlGaN deep ultraviolet light-emitting diodes using a double-sided step graded superlattice electron blocking layer. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2564.	0.9	9
12	A tetracene-based single-electron transistor as a chlorine sensor. Journal of Computational Electronics, 2018, 17, 1515-1520.	1.3	5
13	Improving Color Quality of Nanowire White Light-Emitting Diodes with Mn4+ Doped Fluoride Nanosheets. Micromachines, 2021, 12, 965.	1.4	5
14	Improved Performance of Electron Blocking Layer Free AlGaN Deep Ultraviolet Light-Emitting Diodes Using Graded Staircase Barriers. Micromachines, 2021, 12, 334.	1.4	4
15	Enhancing Efficiency of AlGaN Ultravioletâ€B Lightâ€Emitting Diodes with Graded p <i>â€</i> AlGaN Hole Injection Layer. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100003.	0.8	4
16	Bilayer Dielectrics for RRAM Devices. ECS Transactions, 2018, 86, 77-83.	0.3	3
17	Polarization-Engineered p-Type Electron-Blocking-Layer-Free III-Nitride Deep-Ultraviolet Light-Emitting Diodes for Enhanced Carrier Transport. Journal of Electronic Materials, 2022, 51, 838-846.	1.0	3
18	Controlled carrier mean free path for the enhanced efficiency of III-nitride deep-ultraviolet light-emitting diodes. Applied Optics, 2021, 60, 3088.	0.9	2

#	Article	IF	CITATIONS
19	Effect of HfO2 Passivation Layer on Light Extraction Efficiency of AllnN Nanowire Ultraviolet Light-Emitting Diodes. ECS Transactions, 2021, 102, 35-42.	0.3	2
20	High-efficiency InGaN blue LEDs with reducedpositive sheet polarization. Applied Optics, 0, , .	0.9	2
21	Electron Blocking Layer Free Full-Color InGaN/GaN White Light-Emitting Diodes. ECS Meeting Abstracts, 2020, MA2020-02, 2743-2743.	0.0	1
22	Effect of HfO2 Passivation Layer on Light Extraction Efficiency of AllnN Nanowire Ultraviolet Light-Emitting Diodes. ECS Meeting Abstracts, 2021, MA2021-01, 1073-1073.	0.0	0
23	III-Nitride Based Narrow Band Far-UVC LEDs for Airborne and Surface Disinfection. ECS Transactions, 2020, 98, 83-89.	0.3	0
24	III-Nitride Based Narrow Band Far-UVC LEDs for Airborne and Surface Disinfection. ECS Meeting Abstracts, 2020, MA2020-02, 1825-1825.	0.0	0
25	Ultraviolet Light-Emitting Diodes Using Aluminium Indium Nitride Nanowire Structures. ECS Meeting Abstracts, 2020, MA2020-02, 2739-2739.	0.0	0