List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1895696/publications.pdf Version: 2024-02-01

DETD STEDANER

#	Article	IF	CITATIONS
1	Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 2011, 4, 17-21.	5.4	607
2	Benchmarking homogenization algorithms for monthly data. Climate of the Past, 2012, 8, 89-115.	1.3	286
3	An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor crossâ€validation experiment. International Journal of Climatology, 2019, 39, 3750-3785.	1.5	164
4	20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Global and Planetary Change, 2008, 60, 85-100.	1.6	157
5	Climate of the Carpathian Region in the period 1961-2010: climatologies and trends of 10 variables. International Journal of Climatology, 2015, 35, 1322-1341.	1.5	152
6	Monthly precipitation trends on the Mediterranean fringe of the Iberian Peninsula during the secondâ€half of the twentieth century (1951–2000). International Journal of Climatology, 2009, 29, 1415-1429.	1.5	144
7	Performance of the standardised precipitation evapotranspiration index at various lags for agricultural drought risk assessment in the Czech Republic. Agricultural and Forest Meteorology, 2015, 202, 26-38.	1.9	139
8	Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. Forest Ecology and Management, 2021, 490, 119075.	1.4	134
9	Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theoretical and Applied Climatology, 2014, 115, 563-581.	1.3	130
10	A complete daily precipitation database for northeast Spain: reconstruction, quality control, and homogeneity. International Journal of Climatology, 2010, 30, 1146-1163.	1.5	119
11	Seasonal precipitation trends in the Mediterranean Iberian Peninsula in second half of 20th century. International Journal of Climatology, 2009, 29, 1312-1323.	1.5	107
12	Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961–2007. Advances in Science and Research, 2009, 3, 23-26.	1.0	90
13	Pollution control enhanced spruce growth in the "Black Triangle―near the Czech–Polish border. Science of the Total Environment, 2015, 538, 703-711.	3.9	82
14	Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements. Theoretical and Applied Climatology, 2012, 110, 17-34.	1.3	72
15	Drought trends over part of Central Europe between 1961 and 2014. Climate Research, 2016, 70, 143-160.	0.4	69
16	Droughts in the Czech Lands, 1090–2012 AD. Climate of the Past, 2013, 9, 1985-2002.	1.3	68
17	Soil moisture trends in the Czech Republic between 1961 and 2012. International Journal of Climatology, 2015, 35, 3733-3747.	1.5	61
18	Projection of drought-inducing climate conditions in the Czech Republic according to Euro-CORDEX models. Climate Research, 2016, 70, 179-193.	0.4	60

#	Article	lF	CITATIONS
19	Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Science of the Total Environment, 2017, 609, 506-516.	3.9	57
20	Expected changes in agroclimatic conditions in Central Europe. Climatic Change, 2011, 108, 261-289.	1.7	55
21	Could the changes in regional crop yields be a pointer of climatic change?. Agricultural and Forest Meteorology, 2012, 166-167, 62-71.	1.9	55
22	Czech Drought Monitor System for monitoring and forecasting agricultural drought and drought impacts. International Journal of Climatology, 2020, 40, 5941-5958.	1.5	55
23	Changing climate and the phenological response of great tit and collared flycatcher populations in floodplain forest ecosystems in Central Europe. International Journal of Biometeorology, 2010, 54, 99-111.	1.3	54
24	The extreme drought episode of August 2011–May 2012 in the Czech Republic. International Journal of Climatology, 2015, 35, 3335-3352.	1.5	53
25	Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: a novel approach. Journal of Agricultural Science, 2011, 149, 185-195.	0.6	51
26	Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network. Agricultural and Forest Meteorology, 2017, 247, 56-64.	1.9	49
27	Discerning environmental factors affecting current tree growth in Central Europe. Science of the Total Environment, 2016, 573, 541-554.	3.9	47
28	Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees - Structure and Function, 2021, 35, 103-119.	0.9	47
29	Reflections of global warming in trends of temperature characteristics in the Czech Republic, 1961–2019. International Journal of Climatology, 2021, 41, 1211-1229.	1.5	46
30	Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Pest Management Science, 2014, 70, 708-715.	1.7	44
31	Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change. Agricultural and Forest Meteorology, 2018, 263, 308-322.	1.9	44
32	Climate warming induced synchronous growth decline in Norway spruce populations across biogeographical gradients since 2000. Science of the Total Environment, 2021, 752, 141794.	3.9	44
33	Changing regional weather-crop yield relationships across Europe between 1901 and 2012. Climate Research, 2016, 70, 195-214.	0.4	44
34	Longâ€ŧerm changes in drought indices in eastern and central Europe. International Journal of Climatology, 2022, 42, 225-249.	1.5	41
35	Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high resolution agroclimatic information for decision makers. Journal of Agricultural Science, 2010, 148, 639-656.	0.6	39
36	Documentary and instrumental-based drought indices for the Czech Lands back to AD 1501. Climate Research, 2016, 70, 103-117.	0.4	38

#	Article	IF	CITATIONS
37	Drivers of soil drying in the Czech Republic between 1961 and 2012. International Journal of Climatology, 2015, 35, 2664-2675.	1.5	37
38	An assessment of the role of homogenization protocol in the performance of daily temperature series and trends: application to northeastern Spain. International Journal of Climatology, 2013, 33, 87-108.	1.5	36
39	Predicting sulphur and nitrogen deposition using a simple statistical method. Atmospheric Environment, 2016, 140, 456-468.	1.9	36
40	Tree-Ring Amplification of the Early Nineteenth-Century Summer Cooling in Central Europea. Journal of Climate, 2015, 28, 5272-5288.	1.2	33
41	Climatic drivers of forest productivity in Central Europe. Agricultural and Forest Meteorology, 2017, 234-235, 258-273.	1.9	33
42	Observed changes in precipitation during recent warming: The Czech Republic, 1961–2019. International Journal of Climatology, 2021, 41, 3881-3902.	1.5	33
43	Increased spruce tree growth in Central Europe since 1960s. Science of the Total Environment, 2018, 619-620, 1637-1647.	3.9	29
44	Past (1971–2018) and future (2021–2100) pan evaporation rates in the Czech Republic. Journal of Hydrology, 2020, 590, 125390.	2.3	29
45	Comparative validation of statistical and dynamical downscaling models on a dense grid in central Europe: temperature. Theoretical and Applied Climatology, 2015, 120, 533-553.	1.3	28
46	Drought reconstruction based on grape harvest dates for the Czech Lands, 1499-2012. Climate Research, 2016, 70, 119-132.	0.4	26
47	Climate-driven changes of production regions in Central Europe. Plant, Soil and Environment, 2009, 55, 257-266.	1.0	24
48	Comparison of homogenization methods for daily temperature series against an observation-based benchmark dataset. Theoretical and Applied Climatology, 2020, 140, 285-301.	1.3	23
49	Circulation and Climate Variability in the Czech Republic between 1961 and 2020: A Comparison of Changes for Two "Normal―Periods. Atmosphere, 2022, 13, 137.	1.0	23
50	A 200-year climate record in Central Europe: implications for agriculture. Agronomy for Sustainable Development, 2011, 31, 631-641.	2.2	20
51	Benchmarking homogenization algorithms for monthly data. AIP Conference Proceedings, 2013, , .	0.3	20
52	Observed changes in the agroclimatic zones in the Czech Republic between 1961 and 2019. Plant, Soil and Environment, 2021, 67, 154-163.	1.0	20
53	Spatial Patterns of Heat-Related Cardiovascular Mortality in the Czech Republic. International Journal of Environmental Research and Public Health, 2016, 13, 284.	1.2	19
54	The impacts of key adverse weather events on the fieldâ€grown vegetable yield variability in the Czech Republic from 1961 to 2014. International Journal of Climatology, 2017, 37, 1648-1664.	1.5	18

#	Article	IF	CITATIONS
55	The variability of maximum wind gusts in the Czech Republic between 1961 and 2014. International Journal of Climatology, 2017, 37, 1961-1978.	1.5	18
56	Projected changes in the evolution of drought on various timescales over the Czech Republic according to Euro ORDEX models. International Journal of Climatology, 2018, 38, e939.	1.5	18
57	Temporal changes in years of life lost associated with heat waves in the Czech Republic. Science of the Total Environment, 2020, 716, 137093.	3.9	18
58	Homogenization of monthly precipitation time series in Croatia. International Journal of Climatology, 2014, 34, 3671-3682.	1.5	17
59	Risk occurrences of damaging frosts during the growing season of vegetables in the Elbe River lowland, the Czech Republic. Natural Hazards, 2014, 71, 1-19.	1.6	16
60	Projected shift of Köppen–Geiger zones in the central Europe: A first insight into the implications for ecosystems and the society. International Journal of Climatology, 2018, 38, 3595-3606.	1.5	16
61	Differences in wind speeds according to measured and homogenized series in the Czech Republic, 1961–2015. International Journal of Climatology, 2019, 39, 235-250.	1.5	16
62	Links between circulation types and precipitation in Central Europe in the observed data and regional climate model simulations. International Journal of Climatology, 2014, 34, 2885-2898.	1.5	15
63	Distinct types of landslides in moraines associated with the post-LIA glacier thinning: Observations from the Kinzl Glacier, Huascarán, Peru. Science of the Total Environment, 2020, 739, 139997.	3.9	15
64	Long-term variability of temperature and precipitation in the Czech Lands: an attribution analysis. Climatic Change, 2014, 125, 253-264.	1.7	14
65	The Effects of Climate Change on Variability of the Growing Seasons in the Elbe River Lowland, Czech Republic. Advances in Meteorology, 2015, 2015, 1-16.	0.6	14
66	Total water content thresholds for shallow landslides, Outer Western Carpathians. Landslides, 2016, 13, 337-347.	2.7	14
67	Participatory Climate Change Impact Assessment in Three Czech Cities: The Case of Heatwaves. Sustainability, 2018, 10, 1906.	1.6	14
68	Precipitation in the Czech Republic in Light of Subjective and Objective Classifications of Circulation Types. Atmosphere, 2021, 12, 1536.	1.0	12
69	Temperature extremes and circulation types in the Czech Republic, 1961–2020. International Journal of Climatology, 2022, 42, 4808-4829.	1.5	12
70	Soil drought and circulation types in a longitudinal transect over central Europe. International Journal of Climatology, 2021, 41, E2834.	1.5	11
71	Evaluation of the Homogenization Adjustments Applied to European Temperature Records in the Global Historical Climatology Network Dataset. Atmosphere, 2022, 13, 285.	1.0	11
72	Statistical characteristics of detectable inhomogeneities in observed meteorological time series. Studia Geophysica Et Geodaetica, 2009, 53, 239-260.	0.3	10

#	Article	IF	CITATIONS
73	Drought Prediction System for Central Europe and Its Validation. Geosciences (Switzerland), 2018, 8, 104.	1.0	10
74	Observed and estimated consequences of climate change for the fire weather regime in the moist-temperate climate of the Czech Republic. Agricultural and Forest Meteorology, 2021, 310, 108583.	1.9	10
75	Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions. Agricultural Water Management, 2022, 264, 107460.	2.4	10
76	Paraglacial Rock Slope Stability Under Changing Environmental Conditions, Safuna Lakes, Cordillera Blanca Peru. Frontiers in Earth Science, 2021, 9, .	0.8	9
77	Drought stress impact on vegetable crop yields in the Elbe River lowland between 1961 and 2014. Cuadernos De Investigacion Geografica, 2016, 42, 127-143.	0.6	9
78	Simulation of summer temperature extremes over the Czech Republic in regional climate models. Meteorologische Zeitschrift, 2008, 17, 645-661.	0.5	8
79	Observed and expected changes in wildfire-conducive weather and fire events in peri-urban zones and key nature reserves of the Czech Republic. Climate Research, 2020, 82, 33-54.	0.4	8
80	Projection of 21st century irrigation water requirements for sensitive agricultural crop commodities across the Czech Republic. Agricultural Water Management, 2022, 262, 107337.	2.4	8
81	Impact of volcanic stratospheric aerosols on diurnal temperature range in Europe over the past 200 years: Observations versus model simulations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9064-9077.	1.2	7
82	Spatial and temporal variability of mean daily wind speeds in the Czech Republic, 1961-2015. Climate Research, 2017, 72, 197-216.	0.4	7
83	Potential impacts of climate change on damaging frost during growing season of vegetables. Scientia Agriculturae Bohemica, 2014, 45, 26-35.	0.3	7
84	Analysis of rainfall intensities using very dense network measurements and radar information for the Brno area during the period 2003-2009. Meteorologische Zeitschrift, 2012, 21, 29-35.	0.5	6
85	Phenological differences among selected residents and long-distance migrant bird species in central Europe. International Journal of Biometeorology, 2014, 58, 809-817.	1.3	6
86	Climate variability and potential distribution of selected pest species in south Moravia and north-east Austria in the past 200 years – lessons for the future. Journal of Agricultural Science, 2014, 152, 225-237.	0.6	6
87	Climatic Changes and Their Relation to Weather Types in a Transboundary Mountainous Region in Central Europe. Sustainability, 2018, 10, 2049.	1.6	6
88	Effects of Climatic and Soil Data on Soil Drought Monitoring Based on Different Modelling Schemes. Atmosphere, 2021, 12, 913.	1.0	5
89	Analysing changes in land cover in relation to environmental factors in the districts of Znojmo and TÅ™ebÅÅ•(Czech Republic). European Journal of Environmental Sciences, 2017, 7, 108-118.	0.6	5
90	Changes in forest nitrogen cycling across deposition gradient revealed by δ15N in tree rings. Environmental Pollution, 2022, 304, 119104.	3.7	5

#	Article	IF	CITATIONS
91	Long-term comparison of temperature measurements by the multi-plate shield and Czech-Slovak thermometer screen. Meteorologische Zeitschrift, 2012, 21, 125-133.	0.5	4
92	The December 2014 glaze event in the Czech Republic: predictability and impacts. Weather, 2018, 73, 375-382.	0.6	4
93	Analysis of Sub-Daily Precipitation for the PannEx Region. Atmosphere, 2021, 12, 838.	1.0	4
94	Climatic factors and their influence on onset and duration of phenological phases of chosen plants at locations south Moravia during 1961-2007. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2014, 58, 35-44.	0.2	4
95	Pest occurrence model in current climate - validation study for European domain. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2013, 61, 205-214.	0.2	4
96	Droughts and Drought Management in the Czech Republic in a Changing Climate. Drought and Water Crises, 2017, , 461-480.	0.1	4
97	The 1921 European drought: impacts, reconstruction and drivers. Climate of the Past, 2021, 17, 2201-2221.	1.3	4
98	The analysis of long-term phenological data of apricot tree (Prunus armeniaca L.) in southern Moravia during 1927-2009. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2013, 60, 9-18.	0.2	4
99	Phenological Response of Flood Plain Forest Ecosystem Species to Climate Change during 1961–2021. Atmosphere, 2022, 13, 978.	1.0	4
100	Forcings and projections of past and future wind speed over the Czech Republic. Climate Research, 2019, 77, 1-21.	0.4	3
101	Comparison of two methods of erosive rains determination. Contributions To Geophysics and Geodesy, 2014, 44, 253-269.	0.2	2
102	Changes in a river's regime of a watercourse after a small water reservoir construction. Soil and Water Research, 2020, 15, 55-65.	0.7	2
103	Assess hydrological responses to a warming climate at the Lysina Critical Zone Observatory in Central Europe. Hydrological Processes, 2021, 35, e14281.	1.1	2
104	The dynamics of annual and seasonal precipitation totals in the Czech Republic during 1961–2019. Acta Hydrologica Slovaca, 2020, 21, 197-204.	0.1	0