Anja Scheller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1895085/publications.pdf

Version: 2024-02-01

361045 1,801 47 20 citations h-index papers

g-index 52 52 52 2678 docs citations times ranked citing authors all docs

288905

40

#	Article	IF	CITATIONS
1	Magnetic resonance imaging of cerebrospinal fluid outflow after low-rate lateral ventricle infusion in mice. JCI Insight, 2022, 7, .	2.3	21
2	Impaired bidirectional communication between interneurons and oligodendrocyte precursor cells affects social cognitive behavior. Nature Communications, 2022, 13, 1394.	5.8	28
3	Astrocytes and Microglia Exhibit Cell-Specific Ca2+ Signaling Dynamics in the Murine Spinal Cord. Frontiers in Molecular Neuroscience, 2022, 15, 840948.	1.4	7
4	Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) as a Novel Regulator of Early Astroglial Differentiation. Frontiers in Cellular Neuroscience, 2021, 15, 642521.	1.8	8
5	Murine Esophagus Expresses Glial-Derived Central Nervous System Antigens. International Journal of Molecular Sciences, 2021, 22, 3233.	1.8	8
6	Oligodendroglial GABAergic Signaling: More Than Inhibition!. Neuroscience Bulletin, 2021, 37, 1039-1050.	1.5	17
7	Epigenetic control of regionâ€specific transcriptional programs in mouse cerebellar and cortical astrocytes. Glia, 2021, 69, 2160-2177.	2.5	13
8	From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Frontiers in Neurology, 2021, 12, 661408.	1.1	10
9	Versatile Surface Electrodes for Combined Electrophysiology and Two-Photon Imaging of the Mouse Central Nervous System. Frontiers in Cellular Neuroscience, 2021, 15, 720675.	1.8	6
10	Progenies of NG2 glia: what do we learn from transgenic mouse models ?. Neural Regeneration Research, 2021, 16, 43.	1.6	11
11	L-Type Ca2+ Channels of NG2 Glia Determine Proliferation and NMDA Receptor-Dependent Plasticity. Frontiers in Cell and Developmental Biology, 2021, 9, 759477.	1.8	9
12	Sublaminaâ€specific organization of the blood brain barrier in the mouse olfactory nerve layer. Glia, 2020, 68, 631-645.	2.5	16
13	The Paradox of Astroglial Ca2 + Signals at the Interface of Excitation and Inhibition. Frontiers in Cellular Neuroscience, 2020, 14, 609947.	1.8	24
14	Acute brain injuries trigger microglia as an additional source of the proteoglycan NG2. Acta Neuropathologica Communications, 2020, 8, 146.	2.4	30
15	Deletion of LRP1 From Astrocytes Modifies Neuronal Network Activity in an in vitro Model of the Tripartite Synapse. Frontiers in Cellular Neuroscience, 2020, 14, 567253.	1.8	7
16	Nerve/glial antigen 2 is crucially involved in the revascularization of freely transplanted pancreatic islets. Cell and Tissue Research, 2019, 378, 195-205.	1.5	5
17	Panglial gap junctions between astrocytes and olfactory ensheathing cells mediate transmission of Ca ²⁺ transients and neurovascular coupling. Glia, 2019, 67, 1385-1400.	2.5	22
18	Enteric Glia: S100, GFAP, and Beyond. Anatomical Record, 2019, 302, 1333-1344.	0.8	48

#	Article	IF	Citations
19	Early embryonic NG2 glia are exclusively gliogenic and do not generate neurons in the brain. Glia, 2019, 67, 1094-1103.	2.5	29
20	Conditional Deletion of LRP1 Leads to Progressive Loss of Recombined NG2-Expressing Oligodendrocyte Precursor Cells in a Novel Mouse Model. Cells, 2019, 8, 1550.	1.8	12
21	Refined protocols of tamoxifen injection for inducible DNA recombination in mouse astroglia. Scientific Reports, 2018, 8, 5913.	1.6	98
22	In vivo two-photon imaging of motoneurons and adjacent glia in the ventral spinal cord. Journal of Neuroscience Methods, 2018, 299, 8-15.	1.3	17
23	Nerve/glial antigen (NG) 2 is a crucial regulator of intercellular adhesion molecule (ICAM)-1 expression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 57-66.	1.9	19
24	Role of sodium channel subtype in action potential generation by neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7184-E7192.	3.3	63
25	During Development NG2 Glial Cells of the Spinal Cord are Restricted to the Oligodendrocyte Lineage, but Generate Astrocytes upon Acute Injury. Neuroscience, 2018, 385, 154-165.	1.1	28
26	Microglia morphology in the physiological and diseased brain - from fixed tissue to in vivo conditions. Romanian Journal of Morphology and Embryology, 2018, 59, 7-12.	0.4	5
27	T <scp>RPC</scp> 1―and <scp>TRPC</scp> 3â€dependent <scp>C</scp> a ²⁺ signaling in mouse cortical astrocytes affects injuryâ€evoked astrogliosis <i>in vivo</i> . Glia, 2017, 65, 1535-1549.	2.5	24
28	Enrichment and isolation of neurons from adult mouse brain for ex vivo analysis. Journal of Neuroscience Methods, 2017, 283, 15-22.	1.3	12
29	Astrocytes and oligodendrocytes in grey and white matter regions of the brain metabolize fatty acids. Scientific Reports, 2017, 7, 10779.	1.6	34
30	The Role of the Oligodendrocyte Lineage in Acute Brain Trauma. Neurochemical Research, 2017, 42, 2479-2489.	1.6	16
31	Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia, 2017, 65, 231-249.	2.5	38
32	The in situ morphology of microglia is highly sensitive to the mode of tissue fixation. Journal of Chemical Neuroanatomy, 2017, 86, 59-66.	1.0	34
33	Endocannabinoids and Heterogeneity of Glial Cells in Brain Function. Frontiers in Integrative Neuroscience, 2016, 10, 24.	1.0	23
34	Phenotype and distribution pattern of nestin-GFP-expressing cells in murine myenteric plexus. Cell and Tissue Research, 2016, 366, 573-586.	1.5	16
35	Evaluation of TgH(CX3CR1-EGFP) mice implanted with mCherry-GL261 cells as an in vivo model for morphometrical analysis of glioma-microglia interaction. BMC Cancer, 2016, 16, 72.	1.1	20
36	Norepinephrine-induced calcium signaling in astrocytes in the respiratory network of the ventrolateral medulla. Respiratory Physiology and Neurobiology, 2016, 226, 18-23.	0.7	15

#	Article	IF	CITATIONS
37	Genetic control of astrocyte function in neural circuits. Frontiers in Cellular Neuroscience, 2015, 9, 310.	1.8	25
38	Novel NG2â€CreERT2 knockâ€in mice demonstrate heterogeneous differentiation potential of NG2 glia during development. Glia, 2014, 62, 896-913.	2.5	145
39	Genetic Background Affects Human Glial Fibrillary Acidic Protein Promoter Activity. PLoS ONE, 2013, 8, e66873.	1.1	19
40	Bergmann Glial AMPA Receptors Are Required for Fine Motor Coordination. Science, 2012, 337, 749-753.	6.0	191
41	NO mediates microglial response to acute spinal cord injury under ATP control <i>in vivo</i> . Glia, 2010, 58, 1133-1144.	2.5	132
42	Neuron–astrocyte interactions in the medial nucleus of the trapezoid body. Journal of General Physiology, 2010, 135, 583-594.	0.9	47
43	Astrocyte: Identification Methods. , 2009, , 573-577.		1
44	Split-Cre Complementation Indicates Coincident Activity of Different Genes In Vivo. PLoS ONE, 2009, 4, e4286.	1.1	134
45	Leuchtende Proteine im Nervensystem der Maus. E-Neuroforum, 2007, 13, 93-99.	0.2	0
46	Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2. Glia, 2006, 54, 11-20.	2.5	156
47	Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Molecular and Cellular Neurosciences, 2005, 30, 291-303.	1.0	153