Jacob M Jungers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1894815/publications.pdf Version: 2024-02-01

LACOR M LUNCERS

#	Article	IF	CITATIONS
1	Intermediate wheatgrass seed size and moisture dynamics inform grain harvest timing. Crop Science, 2022, 62, 410-424.	1.8	5
2	Alfalfa forage yield, milk yield, and nutritive value under intensive cutting. , 2022, 5, .		3
3	Forage yield and profitability of grainâ€ŧype intermediate wheatgrass under different harvest schedules. , 2022, 5, .		4
4	Effects of seeding date on grain and biomass yield of intermediate wheatgrass. Agronomy Journal, 2022, 114, 2342-2351.	1.8	7
5	Nitrogen transfer and yield effects of legumes intercropped with the perennial grain crop intermediate wheatgrass. Field Crops Research, 2022, 286, 108627.	5.1	8
6	Process-based analysis of Thinopyrum intermedium phenological development highlights the importance of dual induction for reproductive growth and agronomic performance. Agricultural and Forest Meteorology, 2021, 301-302, 108341.	4.8	17
7	Water availability modifies productivity response to biodiversity and nitrogen in longâ€ŧerm grassland experiments. Ecological Applications, 2021, 31, e02363.	3.8	6
8	Effect of Bran Pre-Treatment with Endoxylanase on the Characteristics of Intermediate Wheatgrass (Thinopyrum intermedium) Bread. Foods, 2021, 10, 1464.	4.3	6
9	Forage Characteristics and Grazing Preference of Cover Crops in Equine Pasture Systems. Journal of Equine Veterinary Science, 2021, 103, 103663.	0.9	2
10	Diversifying bioenergy crops increases yield and yield stability by reducing weed abundance. Science Advances, 2021, 7, eabg8531.	10.3	9
11	Forage nutritive value of modern alfalfa cultivars. Crop, Forage and Turfgrass Management, 2020, 6, e20076.	0.6	11
12	Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth. One Earth, 2020, 3, 176-186.	6.8	60
13	Relationships and influence of yield components on spacedâ€plant and sward seed yield in perennial ryegrass. Grass and Forage Science, 2020, 75, 424-437.	2.9	5
14	Silflower seed and biomass responses to plant density and nitrogenÂfertilization. , 2020, 3, e20118.		9
15	â€~MNâ€Clearwater', the first foodâ€grade intermediate wheatgrass (Kernza perennial grain) cultivar. Journal of Plant Registrations, 2020, 14, 288-297.	0.5	58
16	How does nitrogen and forage harvest affect belowground biomass and nonstructural carbohydrates in dualâ€use Kernza intermediate wheatgrass?. Crop Science, 2020, 60, 2562-2573.	1.8	15
17	Stem and leaf forage nutritive value and morphology of reduced lignin alfalfa. Agronomy Journal, 2020, 112, 406-417.	1.8	25
18	Effects of nitrogen fertilization and planting density on intermediate wheatgrass yield. Agronomy Journal, 2020, 112, 4159-4170.	1.8	19

JACOB M JUNGERS

#	Article	IF	CITATIONS
19	Cultivation of native plants for seed and biomass yield. Agronomy Journal, 2020, 112, 1815-1827.	1.8	4
20	Effects of defoliation and row spacing on intermediate wheatgrass I: Grain production. Agronomy Journal, 2020, 112, 1748-1763.	1.8	31
21	Effects of defoliation and row spacing on intermediate wheatgrass II: Forage yield and economics. Agronomy Journal, 2020, 112, 1862-1880.	1.8	29
22	Potassium Fertilization Affects Alfalfa Forage Yield, Nutritive Value, Root Traits, and Persistence. Agronomy Journal, 2019, 111, 2843-2852.	1.8	25
23	Using Râ€Based Image Analysis to Quantify Rusts on Perennial Ryegrass. The Plant Phenome Journal, 2019, 2, 1-10.	2.0	10
24	Climate Benefits of Increasing Plant Diversity in Perennial Bioenergy Crops. One Earth, 2019, 1, 434-445.	6.8	30
25	Reduced nitrate leaching in a perennial grain crop compared to maize in the Upper Midwest, USA. Agriculture, Ecosystems and Environment, 2019, 272, 63-73.	5.3	104
26	Rotating alfalfa with dry bean as an alternative to corn-soybean rotations in organic systems in the Upper Midwest. Renewable Agriculture and Food Systems, 2019, 34, 41-49.	1.8	0
27	Growth, development, and biomass partitioning of the perennial grain crop <i>Thinopyrum intermedium</i> . Annals of Applied Biology, 2018, 172, 346-354.	2.5	26
28	Responses of Intermediate Wheatgrass to Plant Growth Regulators and Nitrogen Fertilizer. Agronomy Journal, 2018, 110, 1028-1035.	1.8	19
29	Maintaining grain yields of the perennial cereal intermediate wheatgrass in monoculture <i>v.</i> bi-culture with alfalfa in the Upper Midwestern USA. Journal of Agricultural Science, 2018, 156, 758-773.	1.3	46
30	Managing for Multifunctionality in Perennial Grain Crops. BioScience, 2018, 68, 294-304.	4.9	113
31	Plant roots and <scp>GHG</scp> mitigation in native perennial bioenergy cropping systems. GCB Bioenergy, 2017, 9, 326-338.	5.6	11
32	Intermediate Wheatgrass Grain and Forage Yield Responses to Nitrogen Fertilization. Agronomy Journal, 2017, 109, 462-472.	1.8	73
33	Identifying Base Temperature for Alfalfa Germination: Implications for Frost Seeding. Crop Science, 2016, 56, 2833-2840.	1.8	3
34	Perennial Grain and Oilseed Crops. Annual Review of Plant Biology, 2016, 67, 703-729.	18.7	68
35	Shortâ€ŧerm harvesting of biomass from conservation grasslands maintains plant diversity. GCB Bioenergy, 2015, 7, 1050-1061.	5.6	13
36	Longâ€Term Biomass Yield and Species Composition in Native Perennial Bioenergy Cropping Systems. Agronomy Journal, 2015, 107, 1627-1640.	1.8	32

JACOB M JUNGERS

#	Article	IF	CITATIONS
37	The Effect of Nitrogen, Phosphorus, and Potassium Fertilizers on Prairie Biomass Yield, Ethanol Yield, and Nutrient Harvest. Bioenergy Research, 2015, 8, 279-291.	3.9	28
38	Establishing Native Perennial Bioenergy Crops with Cereal Grain Companion Crops. Bioenergy Research, 2015, 8, 109-118.	3.9	6
39	Harvest Date Effects on Biomass Yield, Moisture Content, Mineral Concentration, and Mineral Export in Switchgrass and Native Polycultures Managed for Bioenergy. Bioenergy Research, 2015, 8, 740-749.	3.9	26
40	Effects of Grassland Biomass Harvest on Nesting Pheasants and Ducks. American Midland Naturalist, 2015, 173, 122-132.	0.4	9
41	Energy Potential of Biomass from Conservation Grasslands in Minnesota, USA. PLoS ONE, 2013, 8, e61209.	2.5	32
42	Inconsistent effects of species diversity and N fertilization on soil microbes and carbon storage in perennial bioenergy cropping systems. Renewable Agriculture and Food Systems, 0, , 1-11.	1.8	2