Carina Mallard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1894433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microglia activation in postmortem brains with schizophrenia demonstrates distinct morphological changes between brain regions. Brain Pathology, 2022, 32, e13003.	4.1	49
2	Maternal n-3 Polyunsaturated Fatty Acid Enriched Diet Commands Fatty Acid Composition in Postnatal Brain and Protects from Neonatal Arterial Focal Stroke. Translational Stroke Research, 2022, 13, 449-461.	4.2	6
3	Scavenger receptor CD36 governs recruitment of myeloid cells to the blood–CSF barrier after stroke in neonatal mice. Journal of Neuroinflammation, 2022, 19, 47.	7.2	7
4	An Optimized and Detailed Step-by-Step Protocol for the Analysis of Neuronal Morphology in Golgi-Stained Fetal Sheep Brain. Developmental Neuroscience, 2022, 44, 344-362.	2.0	5
5	Induction of Mitochondrial Fragmentation and Mitophagy after Neonatal Hypoxia–Ischemia. Cells, 2022, 11, 1193.	4.1	5
6	Reelin cells and sexâ€dependent synaptopathology in autism following postnatal immune activation. British Journal of Pharmacology, 2022, 179, 4400-4422.	5.4	10
7	Sex-Dependent Gliovascular Interface Abnormality in the Hippocampus following Postnatal Immune Activation in Mice. Developmental Neuroscience, 2022, 44, 320-330.	2.0	2
8	Association between inflammatory response and outcome after subarachnoid haemorrhage. Acta Neurologica Scandinavica, 2021, 143, 195-205.	2.1	12
9	Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. Journal of Neurochemistry, 2021, 158, 59-73.	3.9	38
10	Dual Profile of Environmental Enrichment and Autistic-Like Behaviors in the Maternal Separated Model in Rats. International Journal of Molecular Sciences, 2021, 22, 1173.	4.1	11
11	Growthâ€differentiationâ€factor 15 levels in obese and healthy pregnancies: Relation to insulin resistance and insulin secretory function. Clinical Endocrinology, 2021, 95, 92-100.	2.4	19
12	Circulating tight-junction proteins are potential biomarkers for blood–brain barrier function in a model of neonatal hypoxic/ischemic brain injury. Fluids and Barriers of the CNS, 2021, 18, 7.	5.0	14
13	Growth differentiation factor 15 increases in both cerebrospinal fluid and serum during pregnancy. PLoS ONE, 2021, 16, e0248980.	2.5	14
14	The selective alpha7 nicotinic acetylcholine receptor agonist AR-R17779 does not affect ischemia–reperfusion brain injury in mice. Bioscience Reports, 2021, 41, .	2.4	3
15	Single-cell atlas reveals meningeal leukocyte heterogeneity in the developing mouse brain. Genes and Development, 2021, 35, 1190-1207.	5.9	18
16	Function and Biomarkers of the Blood-Brain Barrier in a Neonatal Germinal Matrix Haemorrhage Model. Cells, 2021, 10, 1677.	4.1	5
17	Viral mimetic triggers cerebral arteriopathy in juvenile brain via neutrophil elastase and NETosis. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3171-3186.	4.3	7
18	Administration of cyclic glycine-proline during infancy improves adult spatial memory, astrocyte plasticity, vascularization and GluR-1 expression in rats. Nutritional Neuroscience, 2021, , 1-11.	3.1	1

#	Article	IF	CITATIONS
19	Galectin-3 Modulates Microglia Inflammation in vitro but Not Neonatal Brain Injury in vivo under Inflammatory Conditions. Developmental Neuroscience, 2021, 43, 296-311.	2.0	4
20	White matter injury but not germinal matrix hemorrhage induces elevated osteopontin expression in human preterm brains. Acta Neuropathologica Communications, 2021, 9, 166.	5.2	5
21	N-Acetyl Cysteine Restores Sirtuin-6 and Decreases HMGB1 Release Following Lipopolysaccharide-Sensitized Hypoxic-Ischemic Brain Injury in Neonatal Mice. Frontiers in Cellular Neuroscience, 2021, 15, 743093.	3.7	4
22	C3a Receptor Signaling Inhibits Neurodegeneration Induced by Neonatal Hypoxic-Ischemic Brain Injury. Frontiers in Immunology, 2021, 12, 768198.	4.8	8
23	Longitudinal changes in adipokines and free leptin index during and after pregnancy in women with obesity. International Journal of Obesity, 2020, 44, 675-683.	3.4	16
24	Microbial invasion of the amniotic cavity is associated with impaired cognitive and motor function at school age in preterm children. Pediatric Research, 2020, 87, 924-931.	2.3	8
25	Type 2 Innate Lymphoid Cells Accumulate in the Brain After Hypoxia-Ischemia but Do Not Contribute to the Development of Preterm Brain Injury. Frontiers in Cellular Neuroscience, 2020, 14, 249.	3.7	8
26	A Model of Germinal Matrix Hemorrhage in Preterm Rat Pups. Frontiers in Cellular Neuroscience, 2020, 14, 535320.	3.7	11
27	A Systematic Review of Magnesium Sulfate for Perinatal Neuroprotection: What Have We Learnt From the Past Decade?. Frontiers in Neurology, 2020, 11, 449.	2.4	23
28	Flinders sensitive line rats are resistant to infarction following transient occlusion of the middle cerebral artery. Brain Research, 2020, 1737, 146797.	2.2	2
29	Expression of S100A Alarmins in Cord Blood Monocytes Is Highly Associated With Chorioamnionitis and Fetal Inflammation in Preterm Infants. Frontiers in Immunology, 2020, 11, 1194.	4.8	14
30	N-acetylcysteine inhibits bacterial lipopeptide-mediated neutrophil transmigration through the choroid plexus in the developing brain. Acta Neuropathologica Communications, 2020, 8, 4.	5.2	13
31	Overexpression of apoptosis inducing factor aggravates hypoxic-ischemic brain injury in neonatal mice. Cell Death and Disease, 2020, 11, 77.	6.3	27
32	Vancomycin Is Protective in a Neonatal Mouse Model of <i>Staphylococcus epidermidis</i> -Potentiated Hypoxic-Ischemic Brain Injury. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	19
33	Staphylococcus epidermidis Sensitizes Perinatal Hypoxic-Ischemic Brain Injury in Male but Not Female Mice. Frontiers in Immunology, 2020, 11, 516.	4.8	11
34	Inhibiting the interaction between apoptosis-inducing factor and cyclophilin A prevents brain injury in neonatal mice after hypoxia-ischemia. Neuropharmacology, 2020, 171, 108088.	4.1	16
35	Dysmaturation of Somatostatin Interneurons Following Umbilical Cord Occlusion in Preterm Fetal Sheep. Frontiers in Physiology, 2019, 10, 563.	2.8	15
36	Sex-Dependent Effects of Perinatal Inflammation on the Brain: Implication for Neuro-Psychiatric Disorders. International Journal of Molecular Sciences, 2019, 20, 2270.	4.1	53

#	Article	IF	CITATIONS
37	Evidence for Sexual Dimorphism in the Response to TLR3 Activation in the Developing Neonatal Mouse Brain: A Pilot Study. Frontiers in Physiology, 2019, 10, 306.	2.8	17
38	Genetic or Other Causation Should Not Change the Clinical Diagnosis of Cerebral Palsy. Journal of Child Neurology, 2019, 34, 472-476.	1.4	82
39	The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxidants and Redox Signaling, 2019, 31, 643-663.	5.4	26
40	Bestrophin-3 Expression in a Subpopulation of Astrocytes in the Neonatal Brain After Hypoxic-Ischemic Injury. Frontiers in Physiology, 2019, 10, 23.	2.8	5
41	Choroid plexus transcriptome and ultrastructure analysis reveals a TLR2-specific chemotaxis signature and cytoskeleton remodeling in leukocyte trafficking. Brain, Behavior, and Immunity, 2019, 79, 216-227.	4.1	33
42	A novel image segmentation method for the evaluation of inflammation-induced cortical and hippocampal white matter injury in neonatal mice. Journal of Chemical Neuroanatomy, 2019, 96, 79-85.	2.1	3
43	Lack of the brain-specific isoform of apoptosis-inducing factor aggravates cerebral damage in a model of neonatal hypoxia–ischemia. Cell Death and Disease, 2019, 10, 3.	6.3	25
44	Lipopolysaccharideâ€induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 2019, 67, 1047-1061.	4.9	155
45	Microglia and Neonatal Brain Injury. Neuroscience, 2019, 405, 68-76.	2.3	93
46	Magnesium induces preconditioning of the neonatal brain via profound mitochondrial protection. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1038-1055.	4.3	44
47	Magnesium sulphate induces preconditioning in preterm rodent models of cerebral hypoxiaâ€ischemia. International Journal of Developmental Neuroscience, 2018, 70, 56-66.	1.6	14
48	Mitochondrial dynamics, mitophagy and biogenesis in neonatal hypoxicâ€ischaemic brain injury. FEBS Letters, 2018, 592, 812-830.	2.8	42
49	Î ³ δT Cells Contribute to Injury in the Developing Brain. American Journal of Pathology, 2018, 188, 757-767.	3.8	44
50	The myth of the immature barrier systems in the developing brain: role in perinatal brain injury. Journal of Physiology, 2018, 596, 5655-5664.	2.9	34
51	Spirulina diet to lactating mothers protects the antioxidant system and reduces inflammation in post-natal brain after systemic inflammation. Nutritional Neuroscience, 2018, 21, 59-69.	3.1	13
52	Central and peripheral leptin and agoutiâ€related protein during and after pregnancy in relation to weight change. Clinical Endocrinology, 2018, 88, 263-271.	2.4	9
53	Peripheral myeloid cells contribute to brain injury in male neonatal mice. Journal of Neuroinflammation, 2018, 15, 301.	7.2	40
54	Inflammation and Perinatal Brain Injury. , 2018, , 2019-2030.		0

4

#	Article	IF	CITATIONS
55	Myelination induction by a histamine H3 receptor antagonist in a mouse model of preterm white matter injury. Brain, Behavior, and Immunity, 2018, 74, 265-276.	4.1	25
56	Lymphocytes Contribute to the Pathophysiology of Neonatal Brain Injury. Frontiers in Neurology, 2018, 9, 159.	2.4	37
57	Positive and negative conditioning in the neonatal brain. Conditioning Medicine, 2018, 1, 279-293.	1.3	3
58	Intranasal C3a treatment ameliorates cognitive impairment in a mouse model of neonatal hypoxic–ischemic brain injury. Experimental Neurology, 2017, 290, 74-84.	4.1	36
59	Systemic activation of Toll-like receptor 2 suppresses mitochondrial respiration and exacerbates hypoxic–ischemic injury in the developing brain. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1192-1198.	4.3	34
60	Elevated levels of circulating cell-free DNA and neutrophil proteins are associated with neonatal sepsis and necrotizing enterocolitis in immature mice, pigs and infants. Innate Immunity, 2017, 23, 524-536.	2.4	37
61	Translational Stroke Research. Stroke, 2017, 48, 2632-2637.	2.0	108
62	Immune responses in perinatal brain injury. Brain, Behavior, and Immunity, 2017, 63, 210-223.	4.1	39
63	TLR2-mediated leukocyte trafficking to the developing brain. Journal of Leukocyte Biology, 2017, 101, 297-305.	3.3	38
64	Neonatal microglia: The cornerstone of brain fate. Brain, Behavior, and Immunity, 2017, 59, 333-345.	4.1	72
65	Effect of Neuroinflammation on Synaptic Organization and Function in the Developing Brain: Implications for Neurodevelopmental and Neurodegenerative Disorders. Frontiers in Cellular Neuroscience, 2017, 11, 190.	3.7	80
66	Mitochondria, Bioenergetics and Excitotoxicity: New Therapeutic Targets in Perinatal Brain Injury. Frontiers in Cellular Neuroscience, 2017, 11, 199.	3.7	43
67	Cell Death in the Developing Brain after Hypoxia-Ischemia. Frontiers in Cellular Neuroscience, 2017, 11, 248.	3.7	123
68	γÎT cells but not αβT cells contribute to sepsis-induced white matter injury and motor abnormalities in mice. Journal of Neuroinflammation, 2017, 14, 255.	7.2	32
69	Effect of Trp53 gene deficiency on brain injury after neonatal hypoxia-ischemia. Oncotarget, 2017, 8, 12081-12092.	1.8	5
70	Temporal Characterization of Microglia/Macrophage Phenotypes in a Mouse Model of Neonatal Hypoxic-Ischemic Brain Injury. Frontiers in Cellular Neuroscience, 2016, 10, 286.	3.7	83
71	Cerebrospinal fluid levels of insulin, leptin, and agoutiâ€related protein in relation to BMI in pregnant women. Obesity, 2016, 24, 1299-1304.	3.0	10
72	The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. Journal of Physiology, 2016, 594, 807-823.	2.9	384

#	Article	IF	CITATIONS
73	Diabetes negatively affects cortical and striatal GABAergic neurons: an effect that is partially counteracted by exendin-4. Bioscience Reports, 2016, 36, .	2.4	20
74	Sustained Effects of Neonatal Systemic Lipopolysaccharide on IL-1β and Nrf2 in Adult Rat Substantia Nigra Are Partly Normalized by a <i>Spirulina</i> -Enriched Diet. NeuroImmunoModulation, 2016, 23, 250-259.	1.8	4
75	Inflammation and Perinatal Brain Injury. , 2016, , 1-12.		Ο
76	Editorial: White blood cells matter in neonatal white-matter injury. Journal of Leukocyte Biology, 2016, 99, 4-6.	3.3	3
77	GSK3β inhibition protects the immature brain from hypoxic-ischaemic insult via reduced STAT3 signalling. Neuropharmacology, 2016, 101, 13-23.	4.1	38
78	New means to assess neonatal inflammatory brain injury. Journal of Neuroinflammation, 2015, 12, 180.	7.2	40
79	Transcriptomal changes and functional annotation of the developing non-human primate choroid plexus. Frontiers in Neuroscience, 2015, 9, 82.	2.8	8
80	The role of inflammation in perinatal brain injury. Nature Reviews Neurology, 2015, 11, 192-208.	10.1	669
81	Brain Barrier Properties and Cerebral Blood Flow in Neonatal Mice Exposed to Cerebral Hypoxia-Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 818-827.	4.3	104
82	Potential neuroprotective strategies for perinatal infection and inflammation. International Journal of Developmental Neuroscience, 2015, 45, 44-54.	1.6	11
83	A Critical Review of Models of Perinatal Infection. Developmental Neuroscience, 2015, 37, 289-304.	2.0	35
84	Modeling Ischemia in the Immature Brain. Stroke, 2015, 46, 3006-3011.	2.0	71
85	Expression of tight junction proteins and transporters for xenobiotic metabolism at the blood–CSF barrier during development in the nonhuman primate (P. hamadryas). Reproductive Toxicology, 2015, 56, 32-44.	2.9	8
86	Inflammationâ€induced sensitization of the brain in term infants. Developmental Medicine and Child Neurology, 2015, 57, 17-28.	2.1	79
87	<i>Staphylococcus epidermidis</i> Bacteremia Induces Brain Injury in Neonatal Mice via Toll-like Receptor 2-Dependent and -Independent Pathways. Journal of Infectious Diseases, 2015, 212, 1480-1490.	4.0	33
88	Does Caspase-6 Have a Role in Perinatal Brain Injury?. Developmental Neuroscience, 2015, 37, 321-337.	2.0	6
89	Perinatal Hypoxia-Ischemia Reduces <i>α</i> 7 Nicotinic Receptor Expression and Selective <i>α</i> 7 Nicotinic Receptor Stimulation Suppresses Inflammation and Promotes Microglial Mox Phenotype. BioMed Research International, 2014, 2014, 1-8.	1.9	33
90	Astrocytes and microglia in acute cerebral injury underlying cerebral palsy associated with preterm birth. Pediatric Research, 2014, 75, 234-240.	2.3	83

#	Article	IF	CITATIONS
91	The immune response after hypoxia-ischemia in a mouse model of preterm brain injury. Journal of Neuroinflammation, 2014, 11, 153.	7.2	63
92	The effect of osteopontin and osteopontin-derived peptides on preterm brain injury. Journal of Neuroinflammation, 2014, 11, 197.	7.2	28
93	Microglia toxicity in preterm brain injury. Reproductive Toxicology, 2014, 48, 106-112.	2.9	53
94	Mitochondria: hub of injury responses in the developing brain. Lancet Neurology, The, 2014, 13, 217-232.	10.2	153
95	NRF2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology, 2014, 79, 298-306.	4.1	311
96	Effect of inflammation on central nervous system development and vulnerability. Reproductive Toxicology, 2014, 48, 18.	2.9	0
97	Innate defense regulator peptide 1018 protects against perinatal brain injury. Annals of Neurology, 2014, 75, 395-410.	5.3	58
98	Infection-induced inflammation and cerebral injury in preterm infants. Lancet Infectious Diseases, The, 2014, 14, 751-762.	9.1	235
99	Magnesium Is Not Consistently Neuroprotective for Perinatal Hypoxia-Ischemia in Term-Equivalent Models in Preclinical Studies: A Systematic Review. Developmental Neuroscience, 2014, 36, 73-82.	2.0	63
100	Neonatal Peripheral Immune Challenge Activates Microglia and Inhibits Neurogenesis in the Developing Murine Hippocampus. Developmental Neuroscience, 2014, 36, 119-131.	2.0	69
101	Exendin-4 Reduces Ischemic Brain Injury in Normal and Aged Type 2 Diabetic Mice and Promotes Microglial M2 Polarization. PLoS ONE, 2014, 9, e103114.	2.5	80
102	Regulation of Toll-Like Receptors in the Choroid Plexus in the Immature Brain After Systemic Inflammatory Stimuli. Translational Stroke Research, 2013, 4, 220-227.	4.2	38
103	Toll-Like Receptor 3 Expression in Glia and Neurons Alters in Response to White Matter Injury in Preterm Infants. Developmental Neuroscience, 2013, 35, 130-139.	2.0	51
104	Toll-Like Receptor-3 Activation Increases the Vulnerability of the Neonatal Brain to Hypoxia-Ischemia. Journal of Neuroscience, 2013, 33, 12041-12051.	3.6	72
105	Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain, Behavior, and Immunity, 2013, 32, 70-85.	4.1	529
106	Decreased survival of newborn neurons in the dorsal hippocampus after neonatal LPS exposure in mice. Neuroscience, 2013, 253, 21-28.	2.3	35
107	Expression of the Nrf2â€system at the blood SF barrier is modulated by neonatal inflammation and hypoxiaâ€ischemia. Journal of Inherited Metabolic Disease, 2013, 36, 479-490.	3.6	16
108	Radixin expression in microglia after cortical stroke lesion. Glia, 2013, 61, 790-799.	4.9	3

#	Article	IF	CITATIONS
109	Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxicâ€ischemic brain injury. FASEB Journal, 2013, 27, 3797-3804.	0.5	48
110	Time-Dependent Effects of Systemic Lipopolysaccharide Injection on Regulators of Antioxidant Defence Nrf2 and PGC-1α in the Neonatal Rat Brain. NeuroImmunoModulation, 2013, 20, 185-193.	1.8	16
111	Death Associated Protein Kinases: Molecular Structure and Brain Injury. International Journal of Molecular Sciences, 2013, 14, 13858-13872.	4.1	37
112	Preface. Developmental Neuroscience, 2013, 35, 87-87.	2.0	0
113	Combined effect of hypothermia and caspase-2 gene deficiency on neonatal hypoxic–ischemic brain injury. Pediatric Research, 2012, 71, 566-572.	2.3	28
114	Inflammation and Perinatal Brain Injury. , 2012, , 1079-1086.		2
115	Innate Immune Regulation by Toll-Like Receptors in the Brain. ISRN Neurology, 2012, 2012, 1-19.	1.5	68
116	Infection-Induced Vulnerability of Perinatal Brain Injury. Neurology Research International, 2012, 2012, 1-6.	1.3	32
117	Increased MMP-9 and TIMP-1 in mouse neonatal brain and plasma and in human neonatal plasma after hypoxia–ischemia: a potential marker of neonatal encephalopathy. Pediatric Research, 2012, 71, 63-70.	2.3	43
118	Neuroprotection by the histone deacetylase inhibitor trichostatin A in a model of lipopolysaccharide-sensitised neonatal hypoxic-ischaemic brain injury. Journal of Neuroinflammation, 2012, 9, 70.	7.2	69
119	From mice to women and back again: Causalities and clues for Chlamydia-induced tubal ectopic pregnancy. Fertility and Sterility, 2012, 98, 1175-1185.	1.0	25
120	High-field diffusion tensor imaging characterization of cerebral white matter injury in lipopolysaccharide-exposed fetal sheep. Pediatric Research, 2012, 72, 285-292.	2.3	29
121	Dual TNFα-Induced Effects on NRF2 Mediated Antioxidant Defence in Astrocyte-Rich Cultures: Role of Protein Kinase Activation. Neurochemical Research, 2012, 37, 2842-2855.	3.3	18
122	Pathological Changes in the White Matter after Spinal Contusion Injury in the Rat. PLoS ONE, 2012, 7, e43484.	2.5	38
123	A Neonatal Model of Intravenous Staphylococcus epidermidis Infection in Mice <24 h Old Enables Characterization of Early Innate Immune Responses. PLoS ONE, 2012, 7, e43897.	2.5	36
124	Potential Role of Coagulase-negative Staphylococcus Infection in Preterm Brain Injury. Advances in Neuroimmune Biology, 2012, 3, 41-48.	0.7	7
125	Inflammation during fetal and neonatal life: Implications for neurologic and neuropsychiatric disease in children and adults. Annals of Neurology, 2012, 71, 444-457.	5.3	448
126	Cell therapy for neonatal hypoxia–ischemia and cerebral palsy. Annals of Neurology, 2012, 71, 589-600.	5.3	153

#	Article	IF	CITATIONS
127	Which Neuroprotective Agents are Ready for Bench to Bedside Translation in the Newborn Infant?. Journal of Pediatrics, 2012, 160, 544-552.e4.	1.8	147
128	Interaction of Inflammation and Hyperoxia in a Rat Model of Neonatal White Matter Damage. PLoS ONE, 2012, 7, e49023.	2.5	74
129	Learning and Activity after Irradiation of the Young Mouse Brain Analyzed in Adulthood Using Unbiased Monitoring in a Home Cage Environment. Radiation Research, 2011, 175, 336-346.	1.5	32
130	Safety aspects of longitudinal administration of IGF-I/IGFBP-3 complex in neonatal mice. Growth Hormone and IGF Research, 2011, 21, 205-211.	1.1	4
131	Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: Restoring effects of inhibitors of HDACs, p38 MAPK and GSK3β. Neurobiology of Disease, 2011, 44, 142-151.	4.4	88
132	Regulation of Toll-like receptor 1 and -2 in neonatal mice brains after hypoxia-ischemia. Journal of Neuroinflammation, 2011, 8, 45.	7.2	68
133	Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep. Annals of Neurology, 2011, 70, 846-856.	5.3	92
134	The Nrf2â€inducible antioxidant defense in astrocytes can be both up―and downâ€regulated by activated microglia:Involvement of p38 MAPK. Glia, 2011, 59, 785-799.	4.9	39
135	Trace Fear Conditioning Detects Hypoxic-Ischemic Brain Injury in Neonatal Mice. Developmental Neuroscience, 2011, 33, 222-230.	2.0	8
136	Pitfalls in the Quest of Neuroprotectants for the Perinatal Brain. Developmental Neuroscience, 2011, 33, 189-198.	2.0	12
137	Systemic Stimulation of TLR2 Impairs Neonatal Mouse Brain Development. PLoS ONE, 2011, 6, e19583.	2.5	81
138	Inflammatory-Induced Hibernation in the Fetus: Priming of Fetal Sheep Metabolism Correlates with Developmental Brain Injury. PLoS ONE, 2011, 6, e29503.	2.5	16
139	Galectin-3 contributes to neonatal hypoxic–ischemic brain injury. Neurobiology of Disease, 2010, 38, 36-46.	4.4	130
140	Neuroprotective Effect of Bax-Inhibiting Peptide on Neonatal Brain Injury. Stroke, 2010, 41, 2050-2055.	2.0	69
141	NEUROBID—an EUâ€ f unded project to study the developing brain barriers. International Journal of Developmental Neuroscience, 2010, 28, 411-412.	1.6	2
142	Attenuation of Reactive Gliosis Does Not Affect Infarct Volume in Neonatal Hypoxic-Ischemic Brain Injury in Mice. PLoS ONE, 2010, 5, e10397.	2.5	57
143	Developmental Shift of Cyclophilin D Contribution to Hypoxic-Ischemic Brain Injury. Journal of Neuroscience, 2009, 29, 2588-2596.	3.6	113
144	Lipopolysaccharide Sensitizes Neonatal Hypoxic-Ischemic Brain Injury in a MyD88-Dependent Manner. Journal of Immunology, 2009, 183, 7471-7477.	0.8	158

#	Article	IF	CITATIONS
145	White Matter Damage After Chronic Subclinical Inflammation in Newborn Mice. Journal of Child Neurology, 2009, 24, 1171-1178.	1.4	38
146	Role of Mixed Lineage Kinase Inhibition in Neonatal Hypoxia-Ischemia. Developmental Neuroscience, 2009, 31, 420-426.	2.0	7
147	Expression of MMP-12 after Neonatal Hypoxic-Ischemic Brain Injury in Mice. Developmental Neuroscience, 2009, 31, 427-436.	2.0	21
148	Apoptotic Mechanisms in the Immature Brain: Involvement of Mitochondria. Journal of Child Neurology, 2009, 24, 1141-1146.	1.4	88
149	The Role of Toll-like Receptors in Perinatal Brain Injury. Clinics in Perinatology, 2009, 36, 763-772.	2.1	48
150	Partial neuroprotection with low-dose infusion of the α2-adrenergic receptor agonist clonidine after severe hypoxia in preterm fetal sheep. Neuropharmacology, 2008, 55, 166-174.	4.1	35
151	ECG and Heart Rate Variability Changes in Preterm and Near-Term Fetal Lamb Following LPS Exposure. Reproductive Sciences, 2008, 15, 572-583.	2.5	21
152	Delayed IGF-1 Administration Rescues Oligodendrocyte Progenitors from Glutamate-Induced Cell Death and Hypoxic-Ischemic Brain Damage. Developmental Neuroscience, 2007, 29, 302-310.	2.0	58
153	Delayed Peripheral Administration of a GPE Analogue Induces Astrogliosis and Angiogenesis and Reduces Inflammation and Brain Injury following Hypoxia-Ischemia in the Neonatal Rat. Developmental Neuroscience, 2007, 29, 393-402.	2.0	32
154	Melatonin Reduces Inflammation and Cell Death in White Matter in the Mid-Gestation Fetal Sheep Following Umbilical Cord Occlusion. Pediatric Research, 2007, 61, 153-158.	2.3	203
155	Global Gene Expression in the Developing Rat Brain After Hypoxic Preconditioning: Involvement of Apoptotic Mechanisms?. Pediatric Research, 2007, 61, 444-450.	2.3	45
156	Matrix Metalloproteinase-9 Gene Knock-out Protects the Immature Brain after Cerebral Hypoxia–Ischemia. Journal of Neuroscience, 2007, 27, 1511-1518.	3.6	210
157	Dual Role of Intrauterine Immune Challenge on Neonatal and Adult Brain Vulnerability to Hypoxia-Ischemia. Journal of Neuropathology and Experimental Neurology, 2007, 66, 552-561.	1.7	88
158	Inflammation-induced preconditioning in the immature brain. Seminars in Fetal and Neonatal Medicine, 2007, 12, 280-286.	2.3	68
159	<i>N</i> â€acetylcysteine reduces lipopolysaccharideâ€sensitized hypoxicâ€ischemic brain injury. Annals of Neurology, 2007, 61, 263-271.	5.3	146
160	Vascular Response to Hypoxic Preconditioning in the Immature Brain. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 928-938.	4.3	74
161	Deletion of the c-Jun N-terminal Kinase 3 Gene Protects Neonatal Mice against Cerebral Hypoxic—lschaemic Injury. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1022-1032. 	4.3	92
162	Effects of intrauterine inflammation on the developing mouse brain. Brain Research, 2007, 1144, 180-185.	2.2	64

#	Article	IF	CITATIONS
163	Endotoxin-Induced Hypoxic-Ischemic Tolerance Is Mediated by Up-regulation of Corticosterone in Neonatal Rat. Pediatric Research, 2006, 59, 56-60.	2.3	46
164	Disruption of Interleukin-18, but Not Interleukin-1, Increases Vulnerability to Preterm Delivery and Fetal Mortality after Intrauterine Inflammation. American Journal of Pathology, 2006, 169, 967-976.	3.8	42
165	Lipopolysaccharide-induced inflammation and perinatal brain injury. Seminars in Fetal and Neonatal Medicine, 2006, 11, 343-353.	2.3	206
166	Effect of Lipopolysaccharide on Global Gene Expression in the Immature Rat Brain. Pediatric Research, 2006, 60, 161-168.	2.3	68
167	Fetal brain injury in experimental intrauterine asphyxia and inflammation in Göttingen minipigs. Journal of Perinatal Medicine, 2006, 34, 226-34.	1.4	5
168	Effect of inflammation on central nervous system development and vulnerability: review. Current Opinion in Neurology, 2005, 18, 117-123.	3.6	237
169	Role of cytokines in preterm labour and brain injury. BJOG: an International Journal of Obstetrics and Gynaecology, 2005, 112, 16-18.	2.3	156
170	IGFâ€I neuroprotection in the immature brain after hypoxiaâ€ischemia, involvement of Akt and GSK3β?. European Journal of Neuroscience, 2005, 21, 1489-1502.	2.6	121
171	Electrocardiographic changes following umbilical cord occlusion in the midgestation fetal sheep. Acta Obstetricia Et Gynecologica Scandinavica, 2005, 84, 122-128.	2.8	9
172	Neurokinin 1 Receptor Signaling Affects the Local Innate Immune Defense against Genital Herpes Virus Infection. Journal of Immunology, 2005, 175, 6802-6811.	0.8	26
173	Maturational Effects of Lipopolysaccharide on White-Matter Injury in Fetal Sheep. Journal of Child Neurology, 2005, 20, 960-964.	1.4	46
174	Hypoxic Preconditioning Confers Long-Term Reduction of Brain Injury and Improvement of Neurological Ability in Immature Rats. Pediatric Research, 2005, 57, 305-309.	2.3	73
175	White Matter Injury Following Prolonged Free Radical Formation in the 0.65 Gestation Fetal Sheep Brain. Pediatric Research, 2005, 58, 100-105.	2.3	44
176	Growth Hormone-Releasing Peptide Hexarelin Reduces Neonatal Brain Injury and Alters Akt/Glycogen Synthase Kinase-31² Phosphorylation. Endocrinology, 2005, 146, 4665-4672.	2.8	34
177	Combined Deficiency of IL-1β18, but Not IL-1αβ, Reduces Susceptibility to Hypoxia-Ischemia in the Immature Brain. Developmental Neuroscience, 2005, 27, 143-148.	2.0	33
178	Lipopolysaccharide Induces Both a Primary and a Secondary Phase of Sensitization in the Developing Rat Brain. Pediatric Research, 2005, 58, 112-116.	2.3	198
179	The Role of Glucose in Brain Injury Following the Combination of Lipopolysaccharide or Lipoteichoic Acid and Hypoxia-Ischemia in Neonatal Rats. Developmental Neuroscience, 2004, 26, 61-67.	2.0	28
180	Global Gene Expression in the Immature Brain after Hypoxia-Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1317-1332.	4.3	47

#	Article	IF	CITATIONS
181	Inflammatory Gene Profiling in the Developing Mouse Brain after Hypoxia-Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1333-1351.	4.3	134
182	Preconditioning and the developing brain. Seminars in Perinatology, 2004, 28, 389-395.	2.5	52
183	White matter injury in the immature brain: role of interleukin-18. Neuroscience Letters, 2004, 373, 16-20.	2.1	45
184	Global Gene Expression in the Immature Brain After Hypoxia-Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1317-1332.	4.3	30
185	Inflammatory Gene Profiling in the Developing Mouse Brain After Hypoxia-Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1333-1351.	4.3	88
186	White Matter Injury Following Systemic Endotoxemia or Asphyxia in the Fetal Sheep. Neurochemical Research, 2003, 28, 215-223.	3.3	208
187	Interleukin-18 Involvement in Hypoxic–Ischemic Brain Injury. Journal of Neuroscience, 2002, 22, 5910-5919.	3.6	277
188	Models of white matter injury: Comparison of infectious, hypoxicâ€ischemic, and excitotoxic insults. Mental Retardation and Developmental Disabilities Research Reviews, 2002, 8, 30-38.	3.6	389
189	Bacterial endotoxin sensitizes the immature brain to hypoxic–ischaemic injury. European Journal of Neuroscience, 2001, 13, 1101-1106.	2.6	382
190	Synergistic Activation of Caspase-3 by m-Calpain after Neonatal Hypoxia-Ischemia. Journal of Biological Chemistry, 2001, 276, 10191-10198.	3.4	401
191	Exposure to Prenatal Carbon Monoxide and Postnatal Hyperthermia: Short and Long-Term Effects on Neurochemicals and Neuroglia in the Developing Brain. Experimental Neurology, 2000, 162, 235-246.	4.1	5
192	Reduced number of neurons in the hippocampus and the cerebellum in the postnatal guinea-pig following intrauterine growth-restriction. Neuroscience, 2000, 100, 327-333.	2.3	206
193	Antenatal brain injury: aetiology and possibilities of prevention. Seminars in Fetal and Neonatal Medicine, 2000, 5, 41-51.	2.7	26
194	Reduction in Choline Acetyltransferase Immunoreactivity but not Muscarinic-M2 Receptor Immunoreactivity in the Brainstem of SIDS Infants. Journal of Neuropathology and Experimental Neurology, 1999, 58, 255-264.	1.7	48
195	Maturational Change in the Cortical Response to Hypoperfusion Injury in the Fetal Sheep. Pediatric Research, 1998, 43, 674-682.	2.3	78
196	Perinatal Brain Injury Annals of the New York Academy of Sciences, 1995, 765, 304-305.	3.8	2
197	The Effects of IGF-1 Treatment after Hypoxic-Ischemic Brain Injury in Adult Rats. Journal of Cerebral Blood Flow and Metabolism, 1993, 13, 609-616.	4.3	199
198	Pathophysiology of Perinatal Asphyxia. Clinics in Perinatology, 1993, 20, 305-325.	2.1	47

#	Article	IF	CITATIONS
199	A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochemical and Biophysical Research Communications, 1992, 182, 593-599.	2.1	381
200	Outcome after ischemia in the developing sheep brain: An electroencephalographic and histological study. Annals of Neurology, 1992, 31, 14-21.	5.3	207
201	The effect of hypothalamic lesions on the length of gestation in fetal sheep. American Journal of Obstetrics and Gynecology, 1991, 165, 1464-1468.	1.3	20