
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1894240/publications.pdf Version: 2024-02-01

HUNC-WEN LILL

#	Article	IF	CITATIONS
1	Naturalâ€Product Sugar Biosynthesis and Enzymatic Glycodiversification. Angewandte Chemie - International Edition, 2008, 47, 9814-9859.	7.2	363
2	Unusual sugar biosynthesis and natural product glycodiversification. Nature, 2007, 446, 1008-1016.	13.7	284
3	Pathways and Mechanisms in the Biogenesis of Novel Deoxysugars by Bacteria. Annual Review of Microbiology, 1994, 48, 223-256.	2.9	270
4	Biosynthesis of 3,6-Dideoxyhexoses:ÂIn VivoandinVitroEvidence for Proteinâ^'Protein Interaction between CDP-6-deoxy-l-threo-d-glycero-4-hexulose 3-Dehydrase (E1) and Its Reductase (E3)â€. Biochemistry, 1996, 35, 16412-16420.	1.2	265
5	Enzyme-catalysed [4+2] cycloaddition is a key step in the biosynthesis of spinosyn A. Nature, 2011, 473, 109-112.	13.7	265
6	Methylerythritol Phosphate Pathway of Isoprenoid Biosynthesis. Annual Review of Biochemistry, 2013, 82, 497-530.	5.0	248
7	Enzymatic Chemistry of Cyclopropane, Epoxide, and Aziridine Biosynthesis. Chemical Reviews, 2012, 112, 1681-1709.	23.0	224
8	The Diverse Roles of Flavin CoenzymesNature's Most Versatile Thespians. Journal of Organic Chemistry, 2007, 72, 6329-6342.	1.7	156
9	Formation of Unusual Sugars: Mechanistic Studies and Biosynthetic Applications. Annual Review of Biochemistry, 2002, 71, 701-754.	5.0	151
10	Elucidation of the Kijanimicin Gene Cluster:  Insights into the Biosynthesis of Spirotetronate Antibiotics and Nitrosugars. Journal of the American Chemical Society, 2007, 129, 14670-14683.	6.6	131
11	Natural [4 + 2]-Cyclases. Chemical Reviews, 2017, 117, 5367-5388.	23.0	125
12	Dynamically Complex [6+4] and [4+2] Cycloadditions in the Biosynthesis of Spinosyn A. Journal of the American Chemical Society, 2016, 138, 3631-3634.	6.6	116
13	GenK-Catalyzed C-6′ Methylation in the Biosynthesis of Gentamicin: Isolation and Characterization of a Cobalamin-Dependent Radical SAM Enzyme. Journal of the American Chemical Society, 2013, 135, 8093-8096.	6.6	110
14	Current development in isoprenoid precursor biosynthesis and regulation. Current Opinion in Chemical Biology, 2013, 17, 571-579.	2.8	109
15	Structural insight into antibiotic fosfomycin biosynthesis by a mononuclear iron enzyme. Nature, 2005, 437, 838-844.	13.7	107
16	The structure of SpnF, a standalone enzyme that catalyzes [4 + 2] cycloaddition. Nature Chemical Biology, 2015, 11, 256-258.	3.9	101
17	Protein Purification and Function Assignment of the Epoxidase Catalyzing the Formation of Fosfomycin. Journal of the American Chemical Society, 2001, 123, 4619-4620.	6.6	97
18	Novel Enzymatic Mechanisms in Carbohydrate Metabolism. Chemical Reviews, 2000, 100, 4615-4662.	23.0	95

#	Article	IF	CITATIONS
19	A B12-dependent radical SAM enzyme involved in oxetanocin A biosynthesis. Nature, 2017, 544, 322-326.	13.7	91
20	Biosynthesis of Versipelostatin: Identification of an Enzyme-Catalyzed [4+2]-Cycloaddition Required for Macrocyclization of Spirotetronate-Containing Polyketides. Journal of the American Chemical Society, 2015, 137, 572-575.	6.6	89
21	Learning Nature's Strategies for Making Deoxy Sugars:  Pathways, Mechanisms, and Combinatorial Applications. Accounts of Chemical Research, 1999, 32, 579-588.	7.6	85
22	Mechanisms of enzymatic Cî—O bond cleavages in deoxyhexose biosynthesis. Current Opinion in Chemical Biology, 2002, 6, 590-597.	2.8	78
23	The biosynthesis of nitrogen-, sulfur-, and high-carbon chain-containing sugars. Chemical Society Reviews, 2013, 42, 4377.	18.7	75
24	Evidence that the Fosfomycin-Producing Epoxidase, HppE, Is a Non–Heme-Iron Peroxidase. Science, 2013, 342, 991-995.	6.0	69
25	Current developments and challenges in the search for a naturally selected Diels-Alderase. Current Opinion in Chemical Biology, 2012, 16, 124-131.	2.8	65
26	Mechanistic studies of an unprecedented enzyme-catalysed 1,2-phosphono-migration reaction. Nature, 2013, 496, 114-118.	13.7	64
27	The Biosynthesis of Spinosyn in <i>Saccharopolyspora spinosa</i> :  Synthesis of the Cross-Bridging Precursor and Identification of the Function of SpnJ. Journal of the American Chemical Society, 2007, 129, 14582-14584.	6.6	63
28	A Biosynthetic Pathway for BE-7585A, a 2-Thiosugar-Containing Angucycline-Type Natural Product. Journal of the American Chemical Society, 2010, 132, 7405-7417.	6.6	63
29	Characterization and Mechanistic Studies of Desll: A Radical <i>S-</i> Adenosyl- <scp></scp> -methionine Enzyme Involved in the Biosynthesis of TDP- <scp>d</scp> -Desosamine. Journal of the American Chemical Society, 2009, 131, 14030-14042.	6.6	62
30	The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems. Angewandte Chemie - International Edition, 2017, 56, 3446-3489.	7.2	61
31	A Secondary Kinetic Isotope Effect Study of the 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase-Catalyzed Reaction: Evidence for a Retroaldol-Aldol Rearrangement. Journal of the American Chemical Society, 2009, 131, 2048-2049.	6.6	60
32	Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis. Nature, 2014, 510, 427-431.	13.7	59
33	Biosynthesis of TDP-D-Desosamine: Identification of a Strategy for C4 Deoxygenation. Angewandte Chemie - International Edition, 2005, 44, 6742-6746.	7.2	57
34	Influence of water and enzyme SpnF on the dynamics and energetics of the ambimodal [6+4]/[4+2] cycloaddition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E848-E855.	3.3	57
35	Biosynthesis of Mycarose:Â Isolation and Characterization of Enzymes Involved in the C-2 Deoxygenation. Journal of the American Chemical Society, 1999, 121, 8124-8125.	6.6	56
36	Stoichiometry of the Redox Neutral Deamination and Oxidative Dehydrogenation Reactions Catalyzed by the Radical SAM Enzyme DesII. Journal of the American Chemical Society, 2010, 132, 2359-2369.	6.6	55

#	Article	IF	CITATIONS
37	Reaction Catalyzed by GenK, a Cobalamin-Dependent Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Methyltransferase in the Biosynthetic Pathway of Gentamicin, Proceeds with Retention of Configuration. Journal of the American Chemical Society, 2017, 139, 16084-16087.	6.6	54
38	Molecular basis of dimer formation during the biosynthesis of benzofluorene-containing atypical angucyclines. Nature Communications, 2018, 9, 2088.	5.8	53
39	¹⁸ 0 Kinetic Isotope Effects in Non-Heme Iron Enzymes: Probing the Nature of Fe/O ₂ Intermediates. Journal of the American Chemical Society, 2008, 130, 8122-8123.	6.6	51
40	Biosynthesis of Yersiniose:Â Attachment of the Two-Carbon Branched-Chain Is Catalyzed by a Thiamine Pyrophosphate-Dependent Flavoprotein. Journal of the American Chemical Society, 1998, 120, 11796-11797.	6.6	50
41	Construction of the Octose 8-Phosphate Intermediate in Lincomycin A Biosynthesis: Characterization of the Reactions Catalyzed by LmbR and LmbN. Journal of the American Chemical Society, 2012, 134, 17432-17435.	6.6	46
42	Insights into the Branched-Chain Formation of Mycarose: Methylation Catalyzed by an (S)-Adenosylmethionine-Dependent Methyltransferase. Angewandte Chemie - International Edition, 2001, 40, 607-610.	7.2	43
43	Probing the Coenzyme and Substrate Binding Events of CDP-d-glucose 4,6-Dehydratase:Â Mechanistic Implicationsâ€. Biochemistry, 1996, 35, 4721-4731.	1.2	41
44	Biochemistry of the Cyclopropyl Group. , 0, , 959-1025.		40
45	Radical SAM enzymes in the biosynthesis of sugar-containing natural products. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 1231-1244.	1.1	39
46	Investigation of the mechanism of the SpnF-catalyzed [4+2]-cycloaddition reaction in the biosynthesis of spinosyn A. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10408-10413.	3.3	38
47	Identification of the Formycin A Biosynthetic Gene Cluster from <i>Streptomyces kaniharaensis</i> Illustrates the Interplay between Biological Pyrazolopyrimidine Formation and <i>de Novo</i> Purine Biosynthesis. Journal of the American Chemical Society, 2019, 141, 6127-6131.	6.6	38
48	Characterization of TDP-4-Keto-6-deoxy-d-glucose-3,4-ketoisomerase from thed-Mycaminose Biosynthetic Pathway ofStreptomyces fradiae: In Vitro Activity and Substrate Specificity Studiesâ€. Biochemistry, 2007, 46, 577-590.	1.2	37
49	Structural Basis of Regiospecificity of a Mononuclear Iron Enzyme in Antibiotic Fosfomycin Biosynthesis. Journal of the American Chemical Society, 2011, 133, 11262-11269.	6.6	36
50	Mechanistic Studies of 1-Aminocyclopropane-1-carboxylate Deaminase:Â Unique Covalent Catalysis by Coenzyme B6. Journal of the American Chemical Society, 1996, 118, 8763-8764.	6.6	35
51	Characterization of SpnQ from the Spinosyn Biosynthetic Pathway ofSaccharopolyspora spinosa:Â Mechanistic and Evolutionary Implications for C-3 Deoxygenation in Deoxysugar Biosynthesis. Journal of the American Chemical Society, 2006, 128, 14262-14263.	6.6	35
52	Characterization of the flavoenzyme XiaK as an N-hydroxylase and implications in indolosesquiterpene diversification. Chemical Science, 2017, 8, 5067-5077.	3.7	35
53	PARP-1–dependent recruitment of cold-inducible RNA-binding protein promotes double-strand break repair and genome stability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1759-E1768.	3.3	35
54	Following the electrons: peculiarities in the catalytic cycles of radical SAM enzymes. Natural Product Reports, 2018, 35, 615-621.	5.2	34

#	Article	IF	CITATIONS
55	Expression, Purification, and Characterization of TylM1, an N,N-Dimethyltransferase Involved in the Biosynthesis of Mycaminose. Journal of the American Chemical Society, 1998, 120, 9951-9952.	6.6	33
56	Characterization and Mechanistic Studies of Type II Isopentenyl Diphosphate:Dimethylallyl Diphosphate Isomerase from Staphylococcus aureus. Biochemistry, 2007, 46, 8401-8413.	1.2	33
57	Chemoenzymatic Synthesis of Spinosyn A. Angewandte Chemie - International Edition, 2014, 53, 13553-13557.	7.2	33
58	Microbial Resistance to Mitomycins Involves a Redox Relay Mechanism. Journal of the American Chemical Society, 1997, 119, 2576-2577.	6.6	31
59	Expression, Purification, and Characterization of TylB, an Aminotransferase Involved in the Biosynthesis of Mycaminose. Journal of the American Chemical Society, 1999, 121, 7166-7167.	6.6	31
60	Evidence for the Involvement of Acid/Base Chemistry in the Reaction Catalyzed by the Type II Isopentenyl Diphosphate/Dimethylallyl Diphosphate Isomerase from <i>Staphylococcus aureus</i> . Biochemistry, 2008, 47, 2547-2558.	1.2	31
61	EPR-kinetic isotope effect study of the mechanism of radical-mediated dehydrogenation of an alcohol by the radical SAM enzyme DesII. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2088-2093.	3.3	31
62	Structural and functional analysis of two di-domain aromatase/cyclases from type II polyketide synthases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6844-51.	3.3	30
63	Biosynthesis of Desosamine:  Molecular Evidence Suggesting β-Glucosylation as a Self-Resistance Mechanism in Methymycin/Neomethymycin Producing Strain, Streptomyces venezuelae. Journal of the American Chemical Society, 1998, 120, 9374-9375.	6.6	29
64	C3′â€Deoxygenation of Paromamine Catalyzed by a Radical <i>S</i> â€Adenosylmethionine Enzyme: Characterization of the Enzyme AprD4 and Its Reductase Partner AprD3. Angewandte Chemie - International Edition, 2016, 55, 3724-3728.	7.2	29
65	Determination of the Substrate Binding Mode to the Active Site Iron of (S)-2-Hydroxypropylphosphonic Acid Epoxidase Using 17O-Enriched Substrates and Substrate Analogues. Biochemistry, 2007, 46, 12628-12638.	1.2	28
66	In Vitro Characterization of LmbK and LmbO: Identification of GDP- <scp>d</scp> - <i>erythro</i> -α- <scp>d</scp> - <i>gluco</i> -octose as a Key Intermediate in Lincomycin A Biosynthesis. Journal of the American Chemical Society, 2014, 136, 906-909.	6.6	28
67	Biosynthetic Origin of the Atypical Stereochemistry in the Thioheptose Core of Albomycin Nucleoside Antibiotics. Journal of the American Chemical Society, 2019, 141, 2211-2214.	6.6	28
68	Linear Free Energy Relationships Demonstrate a Catalytic Role for the Flavin Mononucleotide Coenzyme of the Type II Isopentenyl Diphosphate:Dimethylallyl Diphosphate Isomerase. Journal of the American Chemical Society, 2010, 132, 9994-9996.	6.6	27
69	An HD domain phosphohydrolase active site tailored for oxetanocin-A biosynthesis. Proceedings of the United States of America, 2016, 113, 13750-13755.	3.3	27
70	Mechanistic Studies of the Biosynthesis of 3,6-Dideoxy Sugars: Stereochemical Analysis of C-3 Deoxygenation. Journal of the American Chemical Society, 1995, 117, 5158-5159.	6.6	26
71	Studies of the Redox Properties of CDP-6-deoxy-l-threo-d-glycero-4-hexulose-3-dehydrase (E1) and CDP-6-deoxy-l-threo-d-glycero-4-hexulose-3-dehydrase reductase (E3):  Two Important Enzymes Involved in the Biosynthesis of Ascarylose. Biochemistry, 1996, 35, 7879-7889.	1.2	26
72	CDP-6-deoxy-6,6-difluoro-d-glucose:Â A Mechanism-Based Inhibitor for CDP-d-glucose 4,6-Dehydratase. Journal of the American Chemical Society, 1998, 120, 9698-9699.	6.6	25

#	Article	IF	CITATIONS
73	Identification of the <i>C</i> â€Glycoside Synthases during Biosynthesis of the Pyrazoleâ€ <i>C</i> â€Nucleosides Formycin and Pyrazofurin. Angewandte Chemie - International Edition, 2019, 58, 16512-16516.	7.2	25
74	The Amipurimycin and Miharamycin Biosynthetic Gene Clusters: Unraveling the Origins of 2-Aminopurinyl Peptidyl Nucleoside Antibiotics. Journal of the American Chemical Society, 2019, 141, 14152-14159.	6.6	25
75	Stereochemical Analysis of Isopentenyl Diphosphate Isomerase Type II fromStaphylococcusaureusUsing Chemically Synthesized (S)- and (R)-[2-2H]Isopentenyl Diphosphates. Organic Letters, 2005, 7, 5677-5680.	2.4	24
76	Mechanistic Studies of the Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Enzyme Desll: EPR Characterization of a Radical Intermediate Generated During Its Catalyzed Dehydrogenation of TDP- <scp>d</scp> -Quinovose. Journal of the American Chemical Society, 2011, 133, 7292-7295.	6.6	24
77	Mechanistic Studies of the Radical <i>S</i> â€Adenosylmethionine Enzyme Desll with TDPâ€ <scp>D</scp> â€Fucose. Angewandte Chemie - International Edition, 2015, 54, 860-863.	7.2	24
78	Substrate Conformation Correlates with the Outcome of Hyoscyamine 6β-Hydroxylase Catalyzed Oxidation Reactions. Journal of the American Chemical Society, 2018, 140, 7433-7436.	6.6	24
79	Mechanistic Studies of the Biosynthesis of Paratose:  Purification and Characterization of CDP-paratose Synthase. Biochemistry, 1998, 37, 4935-4945.	1.2	23
80	Manipulating nature's sugar biosynthetic machineries for glycodiversification of macrolides: Recent advances and future prospects. Pure and Applied Chemistry, 2007, 79, 785-799.	0.9	23
81	Complete reconstitution of the diverse pathways of gentamicin B biosynthesis. Nature Chemical Biology, 2019, 15, 295-303.	3.9	22
82	Mechanistic Studies of the Inactivation of Crotonase by (Methylenecyclopropyl)formyl-CoA. Journal of the American Chemical Society, 1996, 118, 275-276.	6.6	20
83	Mechanistic Enzymology of the Radical SAM Enzyme Desll. Israel Journal of Chemistry, 2015, 55, 315-324.	1.0	20
84	Identification and Characterization of Enzymes Catalyzing Pyrazolopyrimidine Formation in the Biosynthesis of Formycin A. Organic Letters, 2017, 19, 1426-1429.	2.4	20
85	Mechanistic Studies of the Biosynthesis of 2-Thiosugar: Evidence for the Formation of an Enzyme-Bound 2-Ketohexose Intermediate in BexX-Catalyzed Reaction. Journal of the American Chemical Society, 2010, 132, 15544-15546.	6.6	18
86	Changes in Regioselectivity of H Atom Abstraction during the Hydroxylation and Cyclization Reactions Catalyzed by Hyoscyamine 6β-Hydroxylase. Journal of the American Chemical Society, 2019, 141, 1062-1066.	6.6	18
87	Mechanistic Investigation of the Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Enzyme DesII Using Fluorinated Analogues. Journal of the American Chemical Society, 2015, 137, 4964-4967.	6.6	17
88	The surprising history of an antioxidant. Nature, 2017, 551, 37-38.	13.7	17
89	Characterisation of a sugar epimerase enzyme involved in the biosynthesis of a vancomycin-group antibiotic. Chemical Communications, 2000, , 1565-1566.	2.2	16
90	Stereochemical Studies of the Type II Isopentenyl Diphosphate–Dimethylallyl Diphosphate Isomerase Implicate the FMN Coenzyme in Substrate Protonation. ChemBioChem, 2012, 13, 42-46.	1.3	16

#	Article	IF	CITATIONS
91	Fungal biotransformation of tanshinone results in [4+2] cycloaddition with sorbicillinol: evidence for enzyme catalysis and increased antibacterial activity. Applied Microbiology and Biotechnology, 2016, 100, 8349-8357.	1.7	16
92	Die Enzymologie organischer Umwandlungen: Namensreaktionen in biologischen Systemen. Angewandte Chemie, 2017, 129, 3498-3542.	1.6	15
93	Elucidation of the Herbicidin Tailoring Pathway Offers Insights into Its Structural Diversity. Organic Letters, 2019, 21, 1374-1378.	2.4	14
94	Nitrososynthase-Triggered Oxidative Carbon–Carbon Bond Cleavage in Baumycin Biosynthesis. Journal of the American Chemical Society, 2013, 135, 11457-11460.	6.6	13
95	The type II isopentenyl Diphosphate:Dimethylallyl diphosphate isomerase (IDI-2): A model for acid/base chemistry in flavoenzyme catalysis. Archives of Biochemistry and Biophysics, 2017, 632, 47-58.	1.4	13
96	Biosynthesis of Oxetanocin-A Includes a B ₁₂ -Dependent Radical SAM Enzyme That Can Catalyze both Oxidative Ring Contraction and the Demethylation of SAM. Biochemistry, 2021, 60, 537-546.	1.2	13
97	Deciphering the Reaction Pathway of Mononuclear Iron Enzyme-Catalyzed N≡C Triple Bond Formation in Isocyanide Lipopeptide and Polyketide Biosynthesis. ACS Catalysis, 2022, 12, 2270-2279.	5.5	13
98	Characterization of Enzymes Catalyzing Transformations of Cysteine <i>S</i> onjugated Intermediates in the Lincosamide Biosynthetic Pathway. ChemBioChem, 2016, 17, 1606-1611.	1.3	12
99	Identification and Interrogation of the Herbicidin Biosynthetic Gene Cluster: First Insight into the Biosynthesis of a Rare Undecose Nucleoside Antibiotic. Journal of the American Chemical Society, 2017, 139, 16450-16453.	6.6	12
100	Identification of the Enzymes Mediating the Maturation of the Serylâ€ŧRNA Synthetase Inhibitor SBâ€⊋17452 during the Biosynthesis of Albomycins. Angewandte Chemie - International Edition, 2020, 59, 3558-3562.	7.2	12
101	An Efficient Synthesis of Unsymmetrical Optically Active Phosphatidyl Glycerol. Journal of Organic Chemistry, 1999, 64, 648-651.	1.7	11
102	Studies of lincosamide formation complete the biosynthetic pathway for lincomycin A. Proceedings of the United States of America, 2020, 117, 24794-24801.	3.3	11
103	Insights into Complex Oxidation during BE-7585A Biosynthesis: Structural Determination and Analysis of the Polyketide Monooxygenase BexE. ACS Chemical Biology, 2016, 11, 1137-1147.	1.6	10
104	Mechanistic Investigation of 1,2-Diol Dehydration of Paromamine Catalyzed by the Radical <i>S</i> -Adenosyl- <scp> </scp> -methionine Enzyme AprD4. Journal of the American Chemical Society, 2021, 143, 5038-5043.	6.6	10
105	HygY Is a Twitch Radical SAM Epimerase with Latent Dehydrogenase Activity Revealed upon Mutation of a Single Cysteine Residue. Journal of the American Chemical Society, 2021, 143, 15152-15158.	6.6	10
106	Characterization of the coformycin biosynthetic gene cluster inStreptomyces kaniharaensis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10265-10270.	3.3	8
107	Identification of a Pyrrole Intermediate Which Undergoes Câ€Clycosidation and Autoxidation to Yield the Final Product in Showdomycin Biosynthesis. Angewandte Chemie - International Edition, 2021, 60, 17148-17154.	7.2	8
108	Evidence for an Enzyme-Catalyzed Rauhut–Currier Reaction during the Biosynthesis of Spinosyn A. Journal of the American Chemical Society, 2021, 143, 20291-20295.	6.6	8

#	Article	IF	CITATIONS
109	Studies of 1-Amino-2,2-difluorocyclopropane-1-carboxylic Acid: Mechanism of Decomposition and Inhibition of 1-Aminocyclopropane-1-carboxylic Acid Deaminase. Organic Letters, 2015, 17, 3342-3345.	2.4	7
110	Biochemical Basis of Vosevi, a New Treatment for Hepatitis C. Biochemistry, 2018, 57, 479-480.	1.2	7
111	Unraveling the Mechanisms of Isoprenoid Biosynthetic Enzymes: Mechanistic Studies of the Early Stage Enzymes. Chimia, 2009, 63, 334.	0.3	6
112	C3′â€Deoxygenation of Paromamine Catalyzed by a Radical <i>S</i> â€Adenosylmethionine Enzyme: Characterization of the Enzyme AprD4 and Its Reductase Partner AprD3. Angewandte Chemie, 2016, 128, 3788-3792.	1.6	6
113	Study of Uridine 5′-Diphosphate (UDP)-Galactopyranose Mutase Using UDP-5-Fluorogalactopyranose as a Probe: Incubation Results and Mechanistic Implications. Organic Letters, 2016, 18, 3438-3441.	2.4	6
114	Identification of the <i>C</i> â€Glycoside Synthases during Biosynthesis of the Pyrazoleâ€ <i>C</i> â€Nucleosides Formycin and Pyrazofurin. Angewandte Chemie, 2019, 131, 16664-16668.	1.6	6
115	Radical <i>S</i> -Adenosyl Methionine Enzyme BlsE Catalyzes a Radical-Mediated 1,2-Diol Dehydration during the Biosynthesis of Blasticidin S. Journal of the American Chemical Society, 2022, 144, 4478-4486.	6.6	6
116	Characterization of the Oxazinomycin Biosynthetic Pathway Revealing the Key Role of a Nonheme Iron-Dependent Mono-oxygenase. Journal of the American Chemical Society, 2022, 144, 10968-10977.	6.6	6
117	Identification of the Enzymes Mediating the Maturation of the Serylâ€tRNA Synthetase Inhibitor SBâ€217452 during the Biosynthesis of Albomycins. Angewandte Chemie, 2020, 132, 3586-3590.	1.6	5
118	Mechanistic Studies of the Biosynthesis of 3,6â€Dideoxysugars in Bacteria: Exploration of a Novel Câ€O Bond Cleavage Event. Journal of the Chinese Chemical Society, 1995, 42, 627-636.	0.8	3
119	Recent Progress in Unusual Carbohydrate-Containing Natural Products Biosynthesis. , 2020, , 336-392.		3
120	Identification of a Pyrrole Intermediate Which Undergoes Câ€Glycosidation and Autoxidation to Yield the Final Product in Showdomycin Biosynthesis. Angewandte Chemie, 2021, 133, 17285-17291.	1.6	3
121	Theory and Application of the Relationship Between Steady-State Isotope Effects on Enzyme Intermediate Concentrations and Net Rate Constants. Methods in Enzymology, 2017, 596, 459-499.	0.4	3
122	Dioxane Bridge Formation during the Biosynthesis of Spectinomycin Involves a Twitch Radical <i>S</i> -Adenosyl Methionine Dehydrogenase That May Have Evolved from an Epimerase. Journal of the American Chemical Society, 0, , .	6.6	3
123	Mechanistic Implications of the Deamination of TDP-4-amino-4-deoxy- <scp>d</scp> -fucose Catalyzed by the Radical SAM Enzyme Desll. Biochemistry, 2018, 57, 3130-3133.	1.2	2
124	Byproduct formation during the biosynthesis of spinosyn A and evidence for an enzymatic interplay to prevent its formation. Tetrahedron, 2022, 103, 132569.	1.0	2
125	Measurement of Net Rate Constants from Enzyme Progress Curves without Curve Fitting. Biochemistry, 2019, 58, 4950-4956.	1.2	1
126	Distinguishing Concerted versus Stepwise Mechanisms Using Isotope Effects on Isotope Effects. Biochemistry, 2021, 60, 3416-3418.	1.2	1

#	Article	IF	CITATIONS
127	Special Issue in Honor of Koji Nakanishi. Journal of Natural Products, 2011, 74, 303-304.	1.5	Ο
128	Characterization of the Metal and DNA Binding Properties of an Unusual Zinc Finger from Poly(ADPâ€ribose) Polymeraseâ€1 (PARPâ€1). FASEB Journal, 2008, 22, 1057.12.	0.2	0
129	Mechanistic Investigation of the Radical SAM Enzyme Desll Using Fluorinated Analogs. FASEB Journal, 2015, 29, 572.6.	0.2	0
130	Biosynthesis of oxetanocin: are two cofactors better than one?. FASEB Journal, 2018, 32, 796.25.	0.2	0
131	Studies of GenK and OxsB, two B12-dependent radical SAM enzymes involved in natural product biosynthesis. Methods in Enzymology, 2022, , .	0.4	Ο
132	Structural Investigation of AlsA, a Radical <i>Sâ€</i> adenosylmethionine Enzyme Involved in the Biosynthesis of the Oxetaneâ€containing Herbicide Albucidin. FASEB Journal, 2022, 36, .	0.2	0