André Zapun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1894220/publications.pdf Version: 2024-02-01

ΔΝΙΟΦÃ Ο ΖΛΟΙΙΝ

#	Article	IF	CITATIONS
1	Nanoscale dynamics of peptidoglycan assembly during the cell cycle of Streptococcus pneumoniae. Current Biology, 2021, 31, 2844-2856.e6.	3.9	19
2	Lipid Phases and Cell Geometry During the Cell Cycle of Streptococcus pneumoniae. Frontiers in Microbiology, 2019, 10, 351.	3.5	9
3	One-Pot Two-Step Metabolic Labeling of Teichoic Acids and Direct Labeling of Peptidoglycan Reveals Tight Coordination of Both Polymers Inserted into Pneumococcus Cell Wall. ACS Chemical Biology, 2018, 13, 2010-2015.	3.4	6
4	Structure of the essential peptidoglycan amidotransferase MurT/GatD complex from Streptococcus pneumoniae. Nature Communications, 2018, 9, 3180.	12.8	34
5	Substitutions in PBP2b from \hat{l}^2 -Lactam-resistant Streptococcus pneumoniae Have Different Effects on Enzymatic Activity and Drug Reactivity. Journal of Biological Chemistry, 2017, 292, 2854-2865.	3.4	14
6	Penicillin-Binding Proteins and \hat{l}^2 -Lactam Resistance. , 2017, , 177-211.		3
7	Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins. Antibiotics, 2016, 5, 35.	3.7	43
8	Mechanism of β-Lactam Action in Streptococcus pneumoniae: the Piperacillin Paradox. Antimicrobial Agents and Chemotherapy, 2015, 59, 609-621.	3.2	19
9	The Elongation of Ovococci. Microbial Drug Resistance, 2014, 20, 215-221.	2.0	29
10	<i>In vitro</i> Reconstitution of Peptidoglycan Assembly from the Gram-Positive Pathogen <i>Streptococcus pneumoniae</i> . ACS Chemical Biology, 2013, 8, 2688-2696.	3.4	74
11	Inhibition of Streptococcus pneumoniae Penicillin-Binding Protein 2x and Actinomadura R39 DD-Peptidase Activities by Ceftaroline. Antimicrobial Agents and Chemotherapy, 2013, 57, 661-663.	3.2	4
12	Reconstitution of Membrane Protein Complexes Involved in Pneumococcal Septal Cell Wall Assembly. PLoS ONE, 2013, 8, e75522.	2.5	14
13	Peptidoglycan Assembly Machines: The Biochemical Evidence. Microbial Drug Resistance, 2012, 18, 256-260.	2.0	11
14	The membrane anchor of penicillinâ€binding protein PBP2a from <i>Streptococcus</i> â€f <i>pneumoniae</i> influences peptidoglycan chain length. FEBS Journal, 2012, 279, 2071-2081.	4.7	25
15	Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Molecular Microbiology, 2012, 85, 179-194.	2.5	147
16	Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO Journal, 2011, 30, 1425-1432.	7.8	255
17	Optimization of conditions for the glycosyltransferase activity of penicillinâ€binding protein 1a from <i>Thermotoga maritima</i> . FEBS Journal, 2010, 277, 4290-4298.	4.7	20
18	Central Domain of DivIB Caps the C-terminal Regions of the FtsL/DivIC Coiled-coil Rod. Journal of Biological Chemistry, 2009, 284, 27687-27700.	3.4	37

André Zapun

#	Article	IF	CITATIONS
19	Penicillin-Binding Proteins and $\hat{1}^2$ -Lactam Resistance. , 2009, , 145-170.		1
20	Penicillin-binding proteins and \hat{l}^2 -lactam resistance. FEMS Microbiology Reviews, 2008, 32, 361-385.	8.6	475
21	The different shapes of cocci. FEMS Microbiology Reviews, 2008, 32, 345-360.	8.6	164
22	Common Alterations in PBP1a from Resistant Streptococcus pneumoniae Decrease Its Reactivity toward β-Lactams. Journal of Biological Chemistry, 2008, 283, 4886-4894.	3.4	44
23	Roles of Pneumococcal DivIB in Cell Division. Journal of Bacteriology, 2008, 190, 4501-4511.	2.2	24
24	Automated high-throughput process for site-directed mutagenesis, production, purification, and kinetic characterization of enzymes. Analytical Biochemistry, 2006, 355, 110-116.	2.4	11
25	Pneumococcal β-Lactam Resistance Due to a Conformational Change in Penicillin-binding Protein 2x. Journal of Biological Chemistry, 2006, 281, 1771-1777.	3.4	55
26	Bacterial morphogenesis: the cell wall of 'ovococci'. Molecular Microbiology, 2006, .	2.5	0
27	Identical Penicillin-Binding Domains in Penicillin-Binding Proteins of Streptococcus pneumoniae Clinical Isolates with Different Levels of β-Lactam Resistance. Antimicrobial Agents and Chemotherapy, 2005, 49, 2895-2902.	3.2	44
28	In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae. Molecular Microbiology, 2004, 55, 413-424.	2.5	67
29	The d,d-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Molecular Microbiology, 2004, 51, 1641-1648.	2.5	96
30	Growth and division of Streptococcus pneumoniae : localization of the high molecular weight penicillinâ€binding proteins during the cell cycle. Molecular Microbiology, 2003, 50, 845-855.	2.5	118
31	Expression and purification of FtsW and RodA from Streptococcus pneumoniae, two membrane proteins involved in cell division and cell growth, respectively. Protein Expression and Purification, 2003, 30, 18-25.	1.3	9
32	The Structural Modifications Induced by the M339F Substitution in PBP2x from Streptococcus pneumoniae Further Decreases the Susceptibility to β-Lactams of Resistant Strains. Journal of Biological Chemistry, 2003, 278, 44448-44456.	3.4	51
33	Membrane Topology of the Streptococcus pneumoniae FtsW Division Protein. Journal of Bacteriology, 2002, 184, 1925-1931.	2.2	39
34	Increase of the deacylation rate of PBP2x fromStreptococcus pneumoniaeby single point mutations mimicking the class A β-lactamases. FEBS Journal, 2002, 269, 1678-1683.	0.2	26
35	Calcium-dependent conformational stability of modules 1 and 2 of human gelsolin. Biochemical Journal, 2000, 350, 873-881.	3.7	26
36	Protein folding in a specialized compartment: the endoplasmic reticulum. Structure, 1999, 7, R173-R182.	3.3	72

André Zapun

#	Article	IF	CITATIONS
37	Identification and Crystallization of a Protease-Resistant Core of Calnexin That Retains Biological Activity. Journal of Structural Biology, 1998, 123, 260-264.	2.8	11
38	Enhanced Catalysis of Ribonuclease B Folding by the Interaction of Calnexin or Calreticulin with ERp57. Journal of Biological Chemistry, 1998, 273, 6009-6012.	3.4	314
39	Conformation-Independent Binding of Monoglucosylated Ribonuclease B to Calnexin. Cell, 1997, 88, 29-38.	28.9	200
40	Mechanisms and catalysts of disulphide bond formation in proteins. Trends in Biotechnology, 1995, 13, 18-23.	9.3	95
41	Structural and Functional Characterization of DsbC, a Protein Involved in Disulfide Bond Formation in Escherichia coli. Biochemistry, 1995, 34, 5075-5089.	2.5	252
42	Effects of DsbA on the Disulfide Folding of Bovine Pancreatic Trypsin Inhibitor and .alphaLactalbumin. Biochemistry, 1994, 33, 5202-5211.	2.5	98
43	Replacement of the Active-Site Cysteine Residues of DsbA, a Protein Required for Disulfide Bond Formation in vivo. Biochemistry, 1994, 33, 1907-1914.	2.5	63
44	The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry, 1993, 32, 5083-5092.	2.5	278
45	Folding in vitro of bovine pancreatic trypsin inhibitor in the presence of proteins of the endoplasmic reticulum. Proteins: Structure, Function and Bioinformatics, 1992, 14, 10-15.	2.6	65