Josue Ortiz-Medina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/189414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nature Nanotechnology, 2017, 12, 1083-1088.	15.6	307
2	Defect Engineering and Surface Functionalization of Nanocarbons for Metalâ€Free Catalysis. Advanced Materials, 2019, 31, e1805717.	11.1	139
3	High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite. Scientific Reports, 2015, 5, 13562.	1.6	101
4	Nanocarbons from rice husk by microwave plasma irradiation: From graphene and carbon nanotubes to graphenated carbon nanotube hybrids. Carbon, 2015, 94, 479-484.	5.4	81
5	Differential Response of Doped/Defective Graphene and Dopamine to Electric Fields: A Density Functional Theory Study. Journal of Physical Chemistry C, 2015, 119, 13972-13978.	1.5	44
6	Salt rejection behavior of carbon nanotube-polyamide nanocomposite reverse osmosis membranes in several salt solutions. Desalination, 2018, 443, 165-171.	4.0	44
7	Robust water desalination membranes against degradation using high loads of carbon nanotubes. Scientific Reports, 2018, 8, 2748.	1.6	41
8	New Insights in the Natural Organic Matter Fouling Mechanism of Polyamide and Nanocomposite Multiwalled Carbon Nanotubes-Polyamide Membranes. Environmental Science & Technology, 2019, 53, 6255-6263.	4.6	38
9	Antiorganic Fouling and Low-Protein Adhesion on Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposite. ACS Applied Materials & Interfaces, 2017, 9, 32192-32201.	4.0	36
10	Carbon nanotubes and manganese oxide hybrid nanostructures as high performance fiber supercapacitors. Communications Chemistry, 2018, 1, .	2.0	32
11	Nitrogenâ€Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. Advanced Functional Materials, 2013, 23, 3755-3762.	7.8	31
12	Structural evolution of hydrothermal carbon spheres induced by high temperatures and their electrical properties under compression. Carbon, 2017, 121, 426-433.	5.4	25
13	Effective Antiscaling Performance of Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposites. ACS Omega, 2018, 3, 6047-6055.	1.6	25
14	Water Diffusion Mechanism in Carbon Nanotube and Polyamide Nanocomposite Reverse Osmosis Membranes: A Possible Percolation-Hopping Mechanism. Physical Review Applied, 2018, 9, .	1.5	23
15	Microwave plasma-induced graphene-sheet fibers from waste coffee grounds. Journal of Materials Chemistry A, 2015, 3, 14545-14549.	5.2	22
16	Oil removing properties of exfoliated graphite in actual produced water treatment. Journal of Water Process Engineering, 2017, 20, 226-231.	2.6	22
17	Microwave plasma-induced growth of vertical graphene from fullerene soot. Carbon, 2021, 172, 26-30.	5.4	18
18	Facile synthesis of graphene sheets intercalated by carbon spheres for high-performance supercapacitor electrodes. Carbon, 2020, 167, 11-18.	5.4	18

Josue Ortiz-Medina

#	Article	IF	CITATIONS
19	Nanostructured carbon-based membranes: nitrogen doping effects on reverse osmosis performance. NPG Asia Materials, 2016, 8, e258-e258.	3.8	17
20	Enhanced Antifouling Feed Spacer Made from a Carbon Nanotube–Polypropylene Nanocomposite. ACS Omega, 2019, 4, 15496-15503.	1.6	14
21	High Performance and Chlorine Resistant Carbon Nanotube/Aromatic Polyamide Reverse Osmosis Nanocomposite Membrane. MRS Advances, 2016, 1, 1469-1476.	0.5	12
22	Graphene oxide membranes for lactose-free milk. Carbon, 2021, 181, 118-129.	5.4	12
23	Effects of Nitrogen-Doped Multiwall Carbon Nanotubes on Murine Fibroblasts. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	6
24	Enhanced desalination performance in compacted carbon-based reverse osmosis membranes. Nanoscale Advances, 2020, 2, 3444-3451.	2.2	6
25	A 3D orthogonal vision-based band-gap prediction using deep learning: A proof of concept. Computational Materials Science, 2022, 202, 110967.	1.4	5
26	Pine-tree-like morphologies of nitrogen-doped carbon nanotubes: Electron field emission enhancement. Journal of Materials Research, 2014, 29, 2441-2450.	1.2	4
27	Catalytic Nanocarbons: Defect Engineering and Surface Functionalization of Nanocarbons for Metalâ€Free Catalysis (Adv. Mater. 13/2019). Advanced Materials, 2019, 31, 1970096.	11.1	3
28	Unconventional Metallicity in Graphene Nanoribbons with Armchair Edges. Advanced Theory and Simulations, 0, , 2100392.	1.3	1
29	Nanoribbons: Nitrogenâ€Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport (Adv.) Tj ETQ	q1 <u>1</u> 0.784	4314 rgBT /
30	Modeling of Amorphous-Carbon Cells for Molecular Dynamics Simulations. , 2019, , .		0

31 Graphene Oxide Membranes for Water Filtration. N	embrane, 2021, 46, 184-186.	0.0	0
---	-----------------------------	-----	---