Paulo M Brando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1893876/publications.pdf

Version: 2024-02-01

91 papers 10,402 citations

39 h-index 85 g-index

93 all docs 93
docs citations

93 times ranked 11976 citing authors

#	Article	lF	CITATIONS
1	Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.	6.0	1,443
2	The 2010 Amazon Drought. Science, 2011, 331, 554-554.	6.0	912
3	Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science, 2014, 344, 1118-1123.	6.0	770
4	Forest health and global change. Science, 2015, 349, 814-818.	6.0	697
5	Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6347-6352.	3.3	576
6	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	3.5	341
7	Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science, 2016, 351, 972-976.	6.0	336
8	Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1839-1848.	1.8	286
9	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	1.9	281
10	Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology, 2009, 15, 1255-1274.	4.2	280
11	Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13172-13177.	3.3	265
12	Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14685-14690.	3.3	247
13	Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytologist, 2013, 200, 350-365.	3.5	247
14	Fireâ€induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Global Change Biology, 2012, 18, 630-641.	4.2	225
15	Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecological Applications, 2015, 25, 1493-1505.	1.8	196
16	Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake. New Phytologist, 2010, 187, 592-607.	3.5	181
17	Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 2008, 14, 2276-2287.	4.2	162
18	Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120427.	1.8	148

#	Article	IF	Citations
19	The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Global Change Biology, 2015, 21, 2283-2295.	4.2	146
20	Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biology, 2008, 14, 2582-2590.	4.2	145
21	The gathering firestorm in southern Amazonia. Science Advances, 2020, 6, eaay1632.	4.7	132
22	Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis. Annual Review of Earth and Planetary Sciences, 2019, 47, 555-581.	4.6	131
23	Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing. Environmental Research Letters, 2015, 10, 104015.	2.2	113
24	Threshold Responses to Soil Moisture Deficit by Trees and Soil in Tropical Rain Forests: Insights from Field Experiments. BioScience, 2015, 65, 882-892.	2.2	109
25	Land-use-driven stream warming in southeastern Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120153.	1.8	104
26	Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management, 2011, 261, 68-77.	1.4	96
27	The Susceptibility of Southeastern Amazon Forests to Fire: Insights from a Large-Scale Burn Experiment. BioScience, 2015, 65, 893-905.	2.2	89
28	Amazon wildfires: Scenes from a foreseeable disaster. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 268, 151609.	0.6	75
29	Does the disturbance hypothesis explain the biomass increase in basinâ€wide Amazon forest plot data?. Global Change Biology, 2009, 15, 2418-2430.	4.2	74
30	Fire, fragmentation, and windstorms: A recipe for tropical forest degradation. Journal of Ecology, 2019, 107, 656-667.	1.9	74
31	Ecology, economy and management of an agroindustrial frontier landscape in the southeast Amazon. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120152.	1.8	70
32	How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature, 2021, 597, 516-521.	13.7	65
33	Changes in cerrado vegetation after disturbance by frost (S�o Paulo State, Brazil). Plant Ecology, 2005, 175, 205-215.	0.7	63
34	Forest fragmentation, climate change and understory fire regimes on the Amazonian landscapes of the Xingu headwaters. Landscape Ecology, 2012, 27, 585-598.	1.9	58
35	Current and future patterns of fire-induced forest degradation in Amazonia. Environmental Research Letters, 2017, 12, 095005.	2.2	53
36	Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120157.	1.8	49

#	Article	IF	Citations
37	The Forests of the Amazon and Cerrado Moderate Regional Climate and Are the Key to the Future. Tropical Conservation Science, 2017, 10, 194008291772067.	0.6	49
38	Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005677.	1.3	44
39	Prolonged tropical forest degradation due to compounding disturbances: Implications for CO ₂ and H ₂ O fluxes. Global Change Biology, 2019, 25, 2855-2868.	4.2	43
40	Ecosystem productivity and carbon cycling in intact and annually burnt forest at the dry southern limit of the Amazon rainforest (Mato Grosso, Brazil). Plant Ecology and Diversity, 2014, 7, 25-40.	1.0	41
41	ENSO Drives interannual variation of forest woody growth across the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170410.	1.8	41
42	Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nature Communications, 2022, 13, 1964.	5.8	41
43	Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire. Ecology Letters, 2020, 23, 99-106.	3.0	40
44	Climatic limit for agriculture in Brazil. Nature Climate Change, 2021, 11, 1098-1104.	8.1	40
45	The effects of drought on Amazonian rain forests. Geophysical Monograph Series, 2009, , 429-449.	0.1	39
46	Fire-induced forest transition to derived savannas: Cascading effects on ant communities. Biological Conservation, 2017, 214, 295-302.	1.9	37
47	Climate risks to Amazon agriculture suggest a rationale to conserve local ecosystems. Frontiers in Ecology and the Environment, 2019, 17, 584-590.	1.9	36
48	Interactions between repeated fire, nutrients, and insect herbivores affect the recovery of diversity in the southern Amazon. Oecologia, 2013, 172, 219-229.	0.9	35
49	Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest. Global Change Biology, 2016, 22, 2516-2525.	4.2	35
50	Lowland tapirs facilitate seed dispersal in degraded Amazonian forests. Biotropica, 2019, 51, 245-252.	0.8	34
51	Amazonian forest degradation must be incorporated into the COP26 agenda. Nature Geoscience, 2021, 14, 634-635.	5.4	32
52	Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: results of a pilot study undertaken to identify proxy variables useful for rating fire danger. New Phytologist, 2010, 187, 720-732.	3.5	29
53	Tree growth and stem carbon accumulation in human-modified Amazonian forests following drought and fire. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170308.	1.8	29
54	Effects of partial throughfall exclusion on the phenology of Coussarea racemosa (Rubiaceae) in an east-central Amazon rainforest. Oecologia, 2006, 150, 181-189.	0.9	27

#	Article	IF	Citations
55	Structure and composition of altered riparian forests in an agricultural Amazonian landscape. , 2015, 25, 1725-1738.		26
56	Ten new insights in climate science 2021: a horizon scan. Global Sustainability, 2021, 4, .	1.6	26
57	Terrestrial and Inland Water Systems. , 0, , 271-360.		25
58	The impacts of recurrent fires on diversity of fruit-feeding butterflies in a south-eastern Amazon forest. Journal of Tropical Ecology, 2017, 33, 22-32.	0.5	25
59	Starch and lipid storage strategies in tropical trees relate to growth and mortality. New Phytologist, 2021, 230, 139-154.	3.5	25
60	Natural and drought scenarios in an east central Amazon forest: Fidelity of the Community Land Model 3.5 with three biogeochemical models. Journal of Geophysical Research, 2011, 116, .	3.3	23
61	Impacts of fire on sources of soil <scp>CO</scp> ₂ efflux in a dry Amazon rain forest. Global Change Biology, 2018, 24, 3629-3641.	4.2	23
62	Burning in southwestern Brazilian Amazonia, 2016–2019. Journal of Environmental Management, 2021, 286, 112189.	3.8	23
63	Beyond Deforestation: Carbon Emissions From Land Grabbing and Forest Degradation in the Brazilian Amazon. Frontiers in Forests and Global Change, 2021, 4, .	1.0	23
64	Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 18-31.	1.3	22
65	Surprisingly Modest Water Quality Impacts From Expansion and Intensification of Large-Sscale Commercial Agriculture in the Brazilian Amazon-Cerrado Region. Tropical Conservation Science, 2017, 10, 194008291772066.	0.6	17
66	Effects of experimental fires on the phylogenetic and functional diversity of woody species in a neotropical forest. Forest Ecology and Management, 2019, 450, 117497.	1.4	17
67	Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate. Environmental Research Letters, 2020, 15, 034053.	2.2	16
68	Droughts Amplify Differences Between the Energy Balance Components of Amazon Forests and Croplands. Remote Sensing, 2020, 12, 525.	1.8	15
69	Early recruitment responses to interactions between frequent fires, nutrients, and herbivory in the southern Amazon. Oecologia, 2015, 178, 807-817.	0.9	14
70	Tree height matters. Nature Geoscience, 2018, 11, 390-391.	5.4	14
71	Effects of Tropical Deforestation on Surface Energy Balance Partitioning in Southeastern Amazonia Estimated From Maximum Convective Power. Geophysical Research Letters, 2019, 46, 4396-4403.	1.5	14
72	Effects of Fire Frequency on Seed Sources and Regeneration in Southeastern Amazonia. Frontiers in Forests and Global Change, 2020, 3, .	1.0	14

#	Article	IF	CITATIONS
73	A compound event-oriented framework to tropical fire risk assessment in a changing climate. Environmental Research Letters, 2022, 17, 065015.	2.2	14
74	Biological Nitrogen Fixation Does Not Replace Nitrogen Losses After Forest Fires in the Southeastern Amazon. Ecosystems, 2020, 23, 1037-1055.	1.6	13
75	The role of leaf traits in determining litter flammability of south-eastern Amazon tree species. International Journal of Wildland Fire, 2015, 24, 1143.	1.0	12
76	Ecophysiological plasticity of Amazonian trees to long-term drought. Oecologia, 2018, 187, 933-940.	0.9	12
77	Agricultural land-use change alters the structure and diversity of Amazon riparian forests. Biological Conservation, 2020, 252, 108862.	1.9	11
78	The regional carbon budget. Geophysical Monograph Series, 2009, , 409-428.	0.1	10
79	Comment on "The Incidence of Fire in Amazonian Forests with Implications for REDD― Science, 2010, 330, 1627-1627.	6.0	10
80	The Hydrology and Energy Balance of the Amazon Basin. Ecological Studies, 2016, , 35-53.	0.4	10
81	Intensification of fire regimes and forest loss in the Territ \tilde{A}^3 rio Ind \tilde{A} gena do Xingu. Environmental Research Letters, 2022, 17, 045012.	2.2	8
82	Response to Comment on "The Incidence of Fire in Amazonian Forests with Implications for REDD― Science, 2010, 330, 1627-1627.	6.0	7
83	AMAZONIA CAMTRAP: A data set of mammal, bird, and reptile species recorded with camera traps in the Amazon forest. Ecology, 2022, 103, e3738.	1.5	6
84	Reduced predation by arthropods and higher herbivory in burned Amazonian forests. Biotropica, 2022, 54, 1052-1060.	0.8	5
85	Higher fire frequency impaired woody species regeneration in a south-eastern Amazonian forest. Journal of Tropical Ecology, 2020, 36, 190-198.	0.5	3
86	Tropical soybean yield response to reduced or zero phosphorus fertilization depends on soils., 2020, 3, e20113.		2
87	The Latent Dirichlet Allocation model with covariates (LDAcov): A case study on the effect of fire on species composition in Amazonian forests. Ecology and Evolution, 2021, 11, 7970-7979.	0.8	2
88	Climate and leaf phenology controls on tropical forest photosynthesis. , 2016, , .		0
89	Collective action can avoid the "tragedy of the Amazon commons― Frontiers in Ecology and the Environment, 2020, 18, 430-431.	1.9	0
90	Synergism of climatic variables and forest burns in the State of Acre. Biodiversidade Brasileira - BioBrasil, 2020, , 48.	0.0	0

#	Article	IF	CITATIONS
91	The Latent Dirichlet Allocation model applied to airborne <scp>LiDAR</scp> data: A case study on mapping forest degradation associated with fragmentation and fire in the Amazon region. Methods in Ecology and Evolution, 2022, 13, 1329-1342.	2.2	O