Yang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1892649/publications.pdf

Version: 2024-02-01

214721 172386 2,480 47 29 47 citations h-index g-index papers 48 48 48 3721 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. Journal of Controlled Release, 2017, 258, 95-107.	4.8	207
2	A Simple Dual-pH Responsive Prodrug-Based Polymeric Micelles for Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17109-17117.	4.0	144
3	Drug/Dye-Loaded, Multifunctional PEG–Chitosan–Iron Oxide Nanocomposites for Methotraxate Synergistically Self-Targeted Cancer Therapy and Dual Model Imaging. ACS Applied Materials & Interfaces, 2015, 7, 11908-11920.	4.0	119
4	Phytosomes Loaded with Mitomycin C–Soybean Phosphatidylcholine Complex Developed for Drug Delivery. Molecular Pharmaceutics, 2013, 10, 90-101.	2.3	118
5	Tumor Microenvironment Responsive Shape-Reversal Self-Targeting Virus-Inspired Nanodrug for Imaging-Guided Near-Infrared-II Photothermal Chemotherapy. ACS Nano, 2019, 13, 12912-12928.	7.3	118
6	Methotrexate–Camptothecin Prodrug Nanoassemblies as a Versatile Nanoplatform for Biomodal Imaging-Guided Self-Active Targeted and Synergistic Chemotherapy. ACS Applied Materials & Discrete Interfaces, 2017, 9, 34650-34665.	4.0	105
7	Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. Journal of Controlled Release, 2018, 272, 145-158.	4.8	105
8	Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma. Journal of Controlled Release, 2017, 254, 23-33.	4.8	101
9	Fabrication of Red Blood Cell-Based Multimodal Theranostic Probes for Second Near-Infrared Window Fluorescence Imaging-Guided Tumor Surgery and Photodynamic Therapy. Theranostics, 2019, 9, 369-380.	4.6	93
10	PEG–lipid–PLGA hybrid nanoparticles loaded with berberine–phospholipid complex to facilitate the oral delivery efficiency. Drug Delivery, 2017, 24, 825-833.	2.5	91
11	Light/pH-Triggered Biomimetic Red Blood Cell Membranes Camouflaged Small Molecular Drug Assemblies for Imaging-Guided Combinational Chemo-Photothermal Therapy. ACS Applied Materials & Interfaces, 2019, 11, 15262-15275.	4.0	90
12	Development of Both Methotrexate and Mitomycin C Loaded PEGylated Chitosan Nanoparticles for Targeted Drug Codelivery and Synergistic Anticancer Effect. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11413-11423.	4.0	77
13	Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy. Journal of Controlled Release, 2020, 321, 222-235.	4.8	72
14	Self-Assembled Nanoparticles Based on Amphiphilic Anticancer Drug–Phospholipid Complex for Targeted Drug Delivery and Intracellular Dual-Controlled Release. ACS Applied Materials & Diality; Interfaces, 2015, 7, 17573-17581.	4.0	66
15	Self-Targeted, Shape-Assisted, and Controlled-Release Self-Delivery Nanodrug for Synergistic Targeting/Anticancer Effect of Cytoplasm and Nucleus of Cancer Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25553-25559.	4.0	59
16	Both FA- and mPEG-conjugated chitosan nanoparticles for targeted cellular uptake and enhanced tumor tissue distribution. Nanoscale Research Letters, 2011, 6, 563.	3.1	58
17	Orthogonally Functionalized Nanoscale Micelles for Active Targeted Codelivery of Methotrexate and Mitomycin C with Synergistic Anticancer Effect. Molecular Pharmaceutics, 2015, 12, 769-782.	2.3	56
18	Enzyme hybrid virus-like hollow mesoporous CuO adhesive hydrogel spray through glucose-activated cascade reaction to efficiently promote diabetic wound healing. Chemical Engineering Journal, 2021, 415, 128901.	6.6	53

#	Article	IF	CITATIONS
19	Design of pH-sensitive methotrexate prodrug-targeted curcumin nanoparticles for efficient dual-drug delivery and combination cancer therapy. International Journal of Nanomedicine, 2018, Volume 13, 1381-1398.	3.3	50
20	Core-interlayer-shell Fe3O4@mSiO2@lipid-PEG-methotrexate nanoparticle for multimodal imaging and multistage targeted chemo-photodynamic therapy. International Journal of Pharmaceutics, 2017, 521, 19-32.	2.6	48
21	Dually folate/CD44 receptor-targeted self-assembled hyaluronic acid nanoparticles for dual-drug delivery and combination cancer therapy. Journal of Materials Chemistry B, 2017, 5, 6835-6846.	2.9	43
22	Hyaluronic Acid–Methotrexate Conjugates Coated Magnetic Polydopamine Nanoparticles for Multimodal Imaging-Guided Multistage Targeted Chemo-Photothermal Therapy. Molecular Pharmaceutics, 2018, 15, 4049-4062.	2.3	43
23	Novel methotrexate prodrug-targeted drug delivery system based on PEG–lipid–PLA hybrid nanoparticles for enhanced anticancer efficacy and reduced toxicity of mitomycin C. Journal of Materials Chemistry B, 2014, 2, 6534-6548.	2.9	39
24	Erythrocyte membrane bioengineered nanoprobes via indocyanine green-directed assembly for single NIR laser-induced efficient photodynamic/photothermal theranostics. Journal of Controlled Release, 2021, 335, 345-358.	4.8	39
25	Multifunctional Nanosystem Based on Graphene Oxide for Synergistic Multistage Tumor-Targeting and Combined Chemo-Photothermal Therapy. Molecular Pharmaceutics, 2019, 16, 1982-1998.	2.3	38
26	Tumor Microenvironment Cascade-Responsive Nanodrug with Self-Targeting Activation and ROS Regeneration for Synergistic Oxidation-Chemotherapy. Nano-Micro Letters, 2020, 12, 182.	14.4	38
27	Zinc phthalocyanine-soybean phospholipid complex based drug carrier for switchable photoacoustic/fluorescence image, multiphase photothermal/photodynamic treatment and synergetic therapy. Journal of Controlled Release, 2018, 284, 1-14.	4.8	34
28	Imaging-guided synergistic targeting-promoted photo-chemotherapy against cancers by methotrexate-conjugated hyaluronic acid nanoparticles. Chemical Engineering Journal, 2020, 380, 122426.	6.6	31
29	Programmed Nanococktail Based on pH-Responsive Function Switch for Self-Synergistic Tumor-Targeting Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39127-39142.	4.0	30
30	Glutathione-responsive self-delivery nanoparticles assembled by curcumin dimer for enhanced intracellular drug delivery. International Journal of Pharmaceutics, 2018, 549, 230-238.	2.6	30
31	Integration of phospholipid-hyaluronic acid-methotrexate nanocarrier assembly and amphiphilic drug–drug conjugate for synergistic targeted delivery and combinational tumor therapy. Biomaterials Science, 2018, 6, 1818-1833.	2.6	29
32	Small Molecular Theranostic Assemblies Functionalized by Doxorubicin–Hyaluronic Acid–Methotrexate Prodrug for Multiple Tumor Targeting and Imaging-Guided Combined Chemo-Photothermal Therapy. Molecular Pharmaceutics, 2019, 16, 2470-2480.	2.3	29
33	Self-recognizing and stimulus-responsive carrier-free metal-coordinated nanotheranostics for magnetic resonance/photoacoustic/fluorescence imaging-guided synergistic photo-chemotherapy. Journal of Materials Chemistry B, 2020, 8, 5667-5681.	2.9	28
34	Redox-Responsive and Dual-Targeting Hyaluronic Acid–Methotrexate Prodrug Self-Assembling Nanoparticles for Enhancing Intracellular Drug Self-Delivery. Molecular Pharmaceutics, 2019, 16, 3133-3144.	2.3	25
35	Tumor Microenvironment-Responsive Yolk–Shell NaCl@Virus-Inspired Tetrasulfide-Organosilica for lon-Interference Therapy <i>via</i> Osmolarity Surge and Oxidative Stress Amplification. ACS Nano, 2022, 16, 7380-7397.	7.3	25
36	Macrophage-Mimic Hollow Mesoporous Fe-Based Nanocatalysts for Self-Amplified Chemodynamic Therapy and Metastasis Inhibition <i>via</i> Tumor Microenvironment Remodeling. ACS Applied Materials & District Services (2022), 14, 5053-5065.	4.0	24

#	Article	IF	CITATIONS
37	Self-targeted, bacillus-shaped, and controlled-release methotrexate prodrug polymeric nanoparticles for intratumoral administration with improved therapeutic efficacy in tumor-bearing mice. Journal of Materials Chemistry B, 2015, 3, 7707-7717.	2.9	22
38	Fabrication of hypoxia-responsive and uperconversion nanoparticles-modified RBC micro-vehicles for oxygen delivery and chemotherapy enhancement. Biomaterials Science, 2020, 8, 4595-4602.	2.6	17
39	Tumor microenvironment-activated self-charge-generable metallosupramolecular polymer nanocapsules for photoacoustic imaging-guided targeted synergistic photothermal-chemotherapy. Chemical Engineering Journal, 2021, 405, 126690.	6.6	14
40	Design and in vitro evaluation of self-assembled indometacin prodrug nanoparticles for sustained/controlled release and reduced normal cell toxicity. Applied Surface Science, 2017, 425, 674-681.	3.1	11
41	Ultralong-Circulating and Self-Targeting "Watson–Crick A = T―Inspired Supramolecular Nanotheranostics for NIR-II Imaging-Guided Photochemotherapy. ACS Applied Materials & Interfaces, 2020, 12, 32477-32492.	4.0	11
42	Tumor acidity-responsive carrier-free nanodrugs based on targeting activation ⟨i>via⟨ i> ICG-templated assembly for NIR-II imaging-guided photothermal–chemotherapy. Biomaterials Science, 2021, 9, 1008-1019.	2.6	11
43	Preparation of HCPT-Loaded Nanoneedles with Pointed Ends for Highly Efficient Cancer Chemotherapy. Nanoscale Research Letters, 2016, 11, 294.	3.1	10
44	Virus-Inspired Gold Nanorod-Mesoporous Silica Coreâ€"Shell Nanoparticles Integrated with tTF-EG3287 for Synergetic Tumor Photothermal Therapy and Selective Therapy for Vascular Thrombosis. ACS Applied Materials & Diterfaces, 2021, 13, 44013-44027.	4.0	10
45	Virusâ€Inspired Hollow Mesoporous Gadoliniumâ€Bismuth Nanotheranostics for Magnetic Resonance Imagingâ€Guided Synergistic Photodynamicâ€Radiotherapy. Advanced Healthcare Materials, 2022, 11, e2102060.	3.9	8
46	"Watson–Crick Gî€,C―inspired supramolecular nanodrug of methotrexate and 5-fluorouracil for tumor microenvironment-activatable self-recognizing synergistic chemotherapy. Journal of Materials Chemistry B, 2020, 8, 3829-3841.	2.9	7
47	Tumor Microenvironment-Activated and Viral-Mimicking Nanodrugs Driven by Molecular Precise Recognition for dNTP Inhibition-Induced Synergistic Cancer Therapy. ACS Biomaterials Science and Engineering, 2019, 5, 4442-4454.	2.6	4