Richard A Spikings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1892513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 2011, 125, 875-896.	1.4	219
2	How Accurately Can We Date the Duration of Magmatic-Hydrothermal Events in Porphyry Systems?An Invited Paper. Economic Geology, 2013, 108, 565-584.	3.8	213
3	The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75Ma). Gondwana Research, 2015, 27, 95-139.	6.0	190
4	High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochimica Et Cosmochimica Acta, 2014, 127, 39-56.	3.9	154
5	Mio–Pliocene adakite generation related to flat subduction in southern Ecuador: the Quimsacocha volcanic center. Earth and Planetary Science Letters, 2001, 192, 561-570.	4.4	128
6	Detrital zircon fingerprint of the Proto-Andes: Evidence for a Neoproterozoic active margin?. Precambrian Research, 2008, 167, 186-200.	2.7	123
7	Tectonomagmatic evolution of Western Amazonia: Geochemical characterization and zircon U-Pb geochronologic constraints from the Peruvian Eastern Cordilleran granitoids. Bulletin of the Geological Society of America, 2009, 121, 1298-1324.	3.3	122
8	Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes. Lithos, 2013, 160-161, 228-249.	1.4	120
9	Origin and Cretaceous tectonic history of the coastal Ecuadorian forearc between 1°N and 3°S: Paleomagnetic, radiometric and fossil evidence. Earth and Planetary Science Letters, 2006, 249, 400-414.	4.4	112
10	The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nova, 2006, 18, 264-269.	2.1	111
11	Rapid transition to long-lived deep crustal magmatic maturation and the formation of giant porphyry-related mineralization (Yanacocha, Peru). Earth and Planetary Science Letters, 2009, 288, 505-515.	4.4	110
12	Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 2014, 190-191, 383-402.	1.4	98
13	Characterisation of Triassic rifting in Peru and implications for the early disassembly of western Pangaea. Gondwana Research, 2016, 35, 124-143.	6.0	92
14	Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research, 2016, 31, 271-294.	6.0	82
15	Application of low-temperature thermochronology to hydrothermal ore deposits: Formation, preservation and exhumation of epithermal gold systems from the Eastern Rhodopes, Bulgaria. Tectonophysics, 2010, 483, 240-254.	2.2	70
16	Distinguishing between in-situ and accretionary growth of continents along active margins. Lithos, 2014, 202-203, 382-394.	1.4	64
17	Mesozoic arc magmatism along the southern Peruvian margin during Gondwana breakup and dispersal. Lithos, 2012, 146-147, 48-64.	1.4	57
18	Low-temperature thermochronology of the northern Cordillera Real, Ecuador: Tectonic insights from zircon and apatite fission track analysis. Tectonics, 2000, 19, 649-668	2.8	54

RICHARD A SPIKINGS

#	Article	IF	CITATIONS
19	The Chota basin and its significance for the inception and tectonic setting of the inter-Andean depression in Ecuador. Journal of South American Earth Sciences, 2005, 19, 5-19.	1.4	53
20	Vertical tectonics at a continental crustâ€oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics, 2011, 30, .	2.8	51
21	The ⁴⁰ Ar/ ³⁹ Ar and U/Pb dating of young rhyolites in the Kosâ€Nisyros volcanic complex, Eastern Aegean Arc, Greece: Age discordance due to excess ⁴⁰ Ar in biotite. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	45
22	A visualization of the damage in Lead Tungstate calorimeter crystals after exposure to high-energy hadrons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 684, 57-62.	1.6	45
23	Bracketing the Age of Magmatic-Hydrothermal Activity at the Cerro de Pasco Epithermal Polymetallic Deposit, Central Peru: A U-Pb and 40Ar/39Ar Study. Economic Geology, 2009, 104, 479-504.	3.8	44
24	Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America. Lithos, 2016, 248-251, 220-239.	1.4	39
25	Thermochronology and tectonics of the Leeward Antilles: Evolution of the southern Caribbean Plate boundary zone. Tectonics, 2010, 29, n/a-n/a.	2.8	38
26	Zircon Petrochronology and 40Ar/39Ar Thermochronology of the Adamello Intrusive Suite, N. Italy: Monitoring the Growth and Decay of an Incrementally Assembled Magmatic System. Journal of Petrology, 2019, 60, 701-722.	2.8	38
27	Rock uplift and exhumation of continental margins by the collision, accretion, and subduction of buoyant and topographically prominent oceanic crust. Tectonics, 2014, 33, 635-655.	2.8	37
28	Tectonic response of the central Chilean margin (35–38°S) to the collision and subduction of heterogeneous oceanic crust: a thermochronological study. Journal of the Geological Society, 2008, 165, 941-953.	2.1	34
29	Mode and timing of terrane accretion in the forearc of the Andes in Ecuador. , 2009, , .		34
30	Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru. Mineralium Deposita, 2015, 50, 895-922.	4.1	32
31	Late Paleozoic to Jurassic chronostratigraphy of coastal southern Peru: Temporal evolution of sedimentation along an active margin. Journal of South American Earth Sciences, 2013, 47, 179-200.	1.4	30
32	The effect of early Alpine thrusting in late-stage extensional tectonics: Evidence from the Kulidzhik nappe and the Pelevun extensional allochthon in the Rhodope Massif, Bulgaria. Tectonophysics, 2010, 488, 256-281.	2.2	28
33	The Yanaurcu volcano (Western Cordillera, Ecuador): A field, petrographic, geochemical, isotopic and geochronological study. Lithos, 2015, 218-219, 37-53.	1.4	28
34	Phanerozoic Denudation History of the Mount Isa Inlier, Northern Australia: Response of a Proterozoic Mobile Belt to Intraplate Tectonics. International Geology Review, 1997, 39, 107-124.	2.1	25
35	40Ar/39Ar age constraints on the timing of Tertiary crustal extension and its temporal relation to ore-forming and magmatic processes in the Eastern Rhodope Massif, Bulgaria. Lithos, 2013, 180-181, 264-278.	1.4	25
36	New 40Ar/39Ar alunite ages from the Colquijirca district, Peru: evidence of a long period of magmatic SO2 degassing during formation of epithermal Au–Ag and Cordilleran polymetallic ores. Mineralium Deposita, 2008, 43, 777-789.	4.1	24

RICHARD A SPIKINGS

#	Article	IF	CITATIONS
37	The Gondwanan margin in West Antarctica: Insights from Late Triassic magmatism of the Antarctic Peninsula. Gondwana Research, 2020, 81, 1-20.	6.0	22
38	Geochronology and stable isotope signature of alteration related to hydrothermal magnetite ores in Central Anatolia, Turkey. Mineralium Deposita, 2008, 43, 111-124.	4.1	21
39	Constraints from ⁴⁰ Ar/ ³⁹ Ar geochronology on the timing of Alpine shear zones in the Mont Blancâ€Aiguilles Rouges region of the European Alps. Tectonics, 2017, 36, 730-748.	2.8	21
40	High temperature (>350â€ ⁻ °C) thermal histories of the long lived (>500â€ ⁻ Ma) active margin of Ecuador and Colombia: Apatite, titanite and rutile U-Pb thermochronology. Geochimica Et Cosmochimica Acta, 2018, 228, 275-300.	3.9	21
41	Apatite U-Pb Thermochronology: A Review. Minerals (Basel, Switzerland), 2021, 11, 1095.	2.0	21
42	Timing of low-temperature mineral formation during exhumation and cooling in the Central Alps, Switzerland. Earth and Planetary Science Letters, 2012, 327-328, 1-8.	4.4	19
43	From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania). International Journal of Earth Sciences, 2017, 106, 659-685.	1.8	19
44	Constraints on the ages of the crystalline basement and Palaeozoic cover exposed in the Cordillera real, Ecuador: 40Ar/39Ar analyses and detrital zircon U/Pb geochronology. Gondwana Research, 2021, 90, 77-101.	6.0	19
45	40Ar/39Ar and U-Pb geochronology of the Iran Tepe volcanic complex, Eastern Rhodopes. Geologica Balcanica, 2010, 39, 3-12.	0.5	18
46	A revised interpretation of the Chon Aike magmatic province: Active margin origin and implications for the opening of the Weddell Sea. Lithos, 2021, 386-387, 106013.	1.4	16
47	Late cretaceous to miocene stratigraphy and provenance of the coastal forearc and Western Cordillera of Ecuador: Evidence for accretion of a single oceanic plateau fragment. , 2019, , 209-236.		15
48	The effect of intra-crystal uranium zonation on apatite U-Pb thermochronology: A combined ID-TIMS and LA-MC-ICP-MS study. Geochimica Et Cosmochimica Acta, 2019, 251, 15-35.	3.9	15
49	U-Pb ID-TIMS reference ages and initial Pb isotope compositions for Durango and Wilberforce apatites. Chemical Geology, 2021, 586, 120604.	3.3	15
50	Jurassic to Early Paleogene sedimentation in the Amazon region of Ecuador: Implications for the paleogeographic evolution of northwestern South America. Global and Planetary Change, 2021, 204, 103555.	3.5	14
51	Removing a mask of alteration: Geochemistry and age of the Karadag volcanic sequence in SE Crimea. Lithos, 2019, 324-325, 371-384.	1.4	13
52	Evidence of Variscan and Alpine tectonics in the structural and thermochronological record of the central Serbo-Macedonian Massif (south-eastern Serbia). International Journal of Earth Sciences, 2017, 106, 1665-1692.	1.8	12
53	Multi-proxy isotopic tracing of magmatic sources and crustal recycling in the Palaeozoic to Early Jurassic active margin of North-Western Gondwana. Gondwana Research, 2019, 66, 227-245.	6.0	11
54	Geochronology of metamorphism, deformation and fluid circulation: A comparison between Rb-Sr and Ar-Ar phyllosilicate and U-Pb apatite systematics in the Karagwe-Ankole Belt (Central Africa). Gondwana Research, 2020, 83, 279-297.	6.0	11

RICHARD A SPIKINGS

#	Article	IF	CITATIONS
55	Sedimentary-rock-hosted epithermal systems of the Tertiary Eastern Rhodopes, Bulgaria: new constraints from the Stremtsi gold prospect. Geological Society Special Publication, 2014, 402, 207-230.	1.3	10
56	Diffusion vs. fluid alteration in alkali feldspar 40Ar/39Ar thermochronology: Does cross-correlation of log(r/r0) and age spectra validate thermal histories?. Chemical Geology, 2020, 539, 119506.	3.3	10
57	Thermochronology of Alkali Feldspar and Muscovite at T > 150 °C Using the 40Ar/39Ar Method: A Review. Minerals (Basel, Switzerland), 2021, 11, 1025.	2.0	9
58	Diffusion and fluid interaction in Itrongay pegmatite (Madagascar): Evidence from in situ 40Ar/39Ar dating of gem-quality alkali feldspar and U Pb dating of protogenetic apatite inclusions. Chemical Geology, 2020, 556, 119841.	3.3	8
59	Polyphase vein mineralization in the Fennoscandian Shield at Ãkerlandet, Jävsand, and Laisvall along the erosional front of the Caledonian orogen, Sweden. Mineralium Deposita, 2017, 52, 823-844.	4.1	6
60	New age constraints on the palaeoenvironmental evolution of the late Paleozoic back-arc basin along the western Gondwana margin of southern Peru. Journal of South American Earth Sciences, 2018, 82, 165-180.	1.4	6
61	⁴⁰ Ar/ ³⁹ Ar age constraints for an early Alpine metamorphism of the Sakar unit, Sakar–Strandzha zone, Bulgaria. Geological Magazine, 2020, 157, 2106-2112.	1.5	6
62	Thermal history of the crystalline basement from the western and southern Gulf of Mexico: Implications for rifting and later events. , 2021, , 403-420.		6
63	Latest Triassic to Early Cretaceous tectonics of the Northern Andes: Geochronology, geochemistry, isotopic tracing, and thermochronology. , 2019, , 173-208.		5
64	Sedimentology, Provenance and Radiometric Dating of the Silante Formation: Implications for the Cenozoic Evolution of the Western Andes of Ecuador. Minerals (Basel, Switzerland), 2020, 10, 929.	2.0	5
65	Data on the arc magmatism developed in the Antarctic Peninsula and Patagonia during the Late Triassic–Jurassic: A compilation of new and previous geochronology, geochemistry and isotopic tracing results. Data in Brief, 2021, 36, 107042.	1.0	4
66	Geochemical and isotopic variations in a frontal arc volcanic cluster (Chachimbiro-Pulumbura-Pilavo-Yanaurcu, Ecuador). Chemical Geology, 2021, 574, 120240.	3.3	3
67	Geochronological, geochemical and isotopic characterisation of the basement of the Chocó-Panamá Block in Colombia. Lithos, 2022, 412-413, 106598.	1.4	3
68	Mass Spectrometry in Earth Sciences: The Precise and Accurate Measurement of Time. Chimia, 2014, 68, 124-128.	0.6	2
69	Numerical Modelling of Radiogenic Ingrowth and Diffusion of Pb in Apatite Inclusions with Variable Shape and U-Th Zonation. Minerals (Basel, Switzerland), 2021, 11, 364.	2.0	2
70	The Geochemical and Isotopic Record of Wilson Cycles in Northwestern South America: From the Iapetus to the Caribbean. Geosciences (Switzerland), 2022, 12, 5.	2.2	2
71	Comment on Georgiev et al. "Structure and U–Pb zircon geochronology of an Alpine nappe stack telescoped by extensional detachment faulting (Kulidzhik area, Eastern Rhodopes, Bulgaria). International Journal of Earth Sciences, 2016, 105, 2161-2170.	1.8	1
72	Inclusions of Amorphous and Crystalline SiO2 in Minerals from Itrongay (Madagascar) and Other Evidence for the Natural Occurrence of Hydrosilicate Fluids. Geosciences (Switzerland), 2022, 12, 28.	2.2	1