Alessandro Cannavo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1891917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Catalytic Inactivation of GRK5 Impairs Cardiac Function in Mice Via Dysregulated P53 Levels. JACC Basic To Translational Science, 2022, 7, 366-380.	1.9	6
2	Serum galectin-3 and aldosterone: potential biomarkers of cardiac complications in patients with COVID-19. Minerva Endocrinology, 2022, 47, .	0.6	8
3	Sex Differences in Cardiovascular Diseases: A Matter of Estrogens, Ceramides, and Sphingosine 1-Phosphate. International Journal of Molecular Sciences, 2022, 23, 4009.	1.8	10
4	G Protein-Coupled Receptor and Their Kinases in Cell Biology and Disease. International Journal of Molecular Sciences, 2022, 23, 5501.	1.8	2
5	Why Do We Not Assess Sympathetic Nervous System Activity in Heart Failure Management: Might GRK2 Serve as a New Biomarker?. Cells, 2021, 10, 457.	1.8	14
6	Targeting GRK5 for Treating Chronic Degenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 1920.	1.8	12
7	GRK5â€Dependent p53 Activity Controls Basal Cardiac Function and Survival. FASEB Journal, 2021, 35, .	0.2	0
8	Infective Endocarditis: A Focus on Oral Microbiota. Microorganisms, 2021, 9, 1218.	1.6	34
9	Editorial: Molecular Mechanisms Involved in Heart Failure, Parkinson's, and Alzheimer's Diseases. Frontiers in Molecular Biosciences, 2021, 8, 754987.	1.6	0
10	Aging is associated with cardiac autonomic nerve fiber depletion and reduced cardiac and circulating BDNF levels. Journal of Geriatric Cardiology, 2021, 18, 549-559.	0.2	1
11	Abstract P426: Inactivating Grk5 Impairs Basal Cardiac Function And Survival Via P53 Modulation. Circulation Research, 2021, 129, .	2.0	0
12	Abstract P358: Cardiac Innervation Remodeling And Impaired Brain Derived Neurotrophic Factor (bdnf) Levels In Physiological Aging Vivo Model. Circulation Research, 2021, 129, .	2.0	0
13	ls the Hitman in Cardiac Death HiddenÂinÂthe SympatheticÂNervousÂSystem Remodeling?. Journal of the American College of Cardiology, 2020, 75, 14-16.	1.2	1
14	Atrial fibrillation in the elderly: a risk factor beyond stroke. Ageing Research Reviews, 2020, 61, 101092.	5.0	26
15	Potential Bidirectional Relationship Between Periodontitis and Alzheimer's Disease. Frontiers in Physiology, 2020, 11, 683.	1.3	49
16	Abstract 340: Myocyte-borne Bdnf is Essential to Limit Post-ischemic Cardiac Injury and Dysfunction. Circulation Research, 2020, 127, .	2.0	0
17	Predisposing factors to heart failure in diabetic nephropathy: a look at the sympathetic nervous system hyperactivity. Aging Clinical and Experimental Research, 2019, 31, 321-330.	1.4	18
18	Aldosterone Jeopardizes Myocardial Insulin and β-Adrenergic Receptor Signaling via G Protein-Coupled Receptor Kinase 2. Frontiers in Pharmacology, 2019, 10, 888.	1.6	14

#	Article	IF	CITATIONS
19	Aldosterone and Myocardial Pathology. Vitamins and Hormones, 2019, 109, 387-406.	0.7	6
20	Periodontal Disease: A Risk Factor for Diabetes and Cardiovascular Disease. International Journal of Molecular Sciences, 2019, 20, 1414.	1.8	229
21	Alteration of myocardial GRK2 produces a global metabolic phenotype. JCI Insight, 2019, 4, .	2.3	13
22	GRK2 as negative modulator of NO bioavailability: Implications for cardiovascular disease. Cellular Signalling, 2018, 41, 33-40.	1.7	15
23	GRK2 as a therapeutic target for heart failure. Expert Opinion on Therapeutic Targets, 2018, 22, 75-83.	1.5	56
24	Aldosterone and Mineralocorticoid Receptor System in Cardiovascular Physiology and Pathophysiology. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	1.9	46
25	Burning Redoxstats in the Brainstem. Hypertension, 2017, 69, 1019-1021.	1.3	0
26	Structure-Based Design of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors Based on Paroxetine. Journal of Medicinal Chemistry, 2017, 60, 3052-3069.	2.9	41
27	GRK2 Regulates α2-Adrenergic Receptor–Dependent Catecholamine Release in Human Adrenal Chromaffin Cells. Journal of the American College of Cardiology, 2017, 69, 1515-1517.	1.2	11
28	Structural Determinants Influencing the Potency and Selectivity of Indazole-Paroxetine Hybrid G Protein–Coupled Receptor Kinase 2 Inhibitors. Molecular Pharmacology, 2017, 92, 707-717.	1.0	27
29	β 1 -Blockade Prevents Post-Ischemic Myocardial Decompensation Via β 3 AR-Dependent Protective Sphingosine-1 Phosphate Signaling. Journal of the American College of Cardiology, 2017, 70, 182-192.	1.2	37
30	Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Frontiers in Pharmacology, 2017, 8, 556.	1.6	80
31	microRNA in Cardiovascular Aging and Age-Related Cardiovascular Diseases. Frontiers in Medicine, 2017, 4, 74.	1.2	80
32	Targeting β3-Adrenergic Receptors in the Heart: Selective Agonism and β-Blockade. Journal of Cardiovascular Pharmacology, 2017, 69, 71-78.	0.8	67
33	Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases. Nature Communications, 2016, 7, 10877.	5.8	56
34	Structure-Based Design, Synthesis, and Biological Evaluation of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 3793-3807.	2.9	53
35	G-Protein-Coupled Receptors and Their Kinases in Cardiac Regulation. Methods in Pharmacology and Toxicology, 2016, , 271-281.	0.1	0
36	Impact of aging on cardiac sympathetic innervation measured by 123I-mIBG imaging in patients with systolic heart failure. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 2392-2400.	3.3	33

#	Article	IF	CITATIONS
37	Adrenergic Receptor Kinase C-Terminal Peptide Gene-Therapy Improves Â2-Adrenergic Receptor-Dependent Neoangiogenesis after Hindlimb Ischemia. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 503-513.	1.3	13
38	Prognostic Value of Lymphocyte G Protein-Coupled Receptor Kinase-2 Protein Levels in Patients With Heart Failure. Circulation Research, 2016, 118, 1116-1124.	2.0	38
39	Increased Epicardial Adipose Tissue Volume Correlates With Cardiac Sympathetic Denervation in Patients With Heart Failure. Circulation Research, 2016, 118, 1244-1253.	2.0	74
40	GRK2 compromises cardiomyocyte mitochondrial function by diminishing fatty acid-mediated oxygen consumption and increasing superoxide levels. Journal of Molecular and Cellular Cardiology, 2015, 89, 360-364.	0.9	51
41	Eating Away at Heart Failureâ^—. Journal of the American College of Cardiology, 2015, 66, 2534-2535.	1.2	2
42	Impact of diabetes mellitus on lymphocyte <scp>GRK</scp> 2 protein levels in patients with heart failure. European Journal of Clinical Investigation, 2015, 45, 187-195.	1.7	25
43	Chronic β1-adrenergic blockade enhances myocardial β3-adrenergic coupling with nitric oxide-cGMP signaling in a canine model of chronic volume overload: new insight into mechanisms of cardiac benefit with selective β1-blocker therapy. Basic Research in Cardiology, 2015, 110, 456.	2.5	43
44	Crystal Structure of G Protein-coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor. Journal of Biological Chemistry, 2015, 290, 20649-20659.	1.6	39
45	Differential Role of G Protein–Coupled Receptor Kinase 5 in Physiological Versus Pathological Cardiac Hypertrophy. Circulation Research, 2015, 117, 1001-1012.	2.0	27
46	The Adrenergic System of the Myocardium. , 2015, , 13-24.		0
47	Identification and Characterization of Amlexanox as a G Protein-Coupled Receptor Kinase 5 Inhibitor. Molecules, 2014, 19, 16937-16949.	1.7	42
48	Negative Impact of β-Arrestin-1 on Post-Myocardial Infarction Heart Failure via Cardiac and Adrenal-Dependent Neurohormonal Mechanisms. Hypertension, 2014, 63, 404-412.	1.3	102
49	Changes of plasma norepinephrine and serum N-terminal pro-brain natriuretic peptide after exercise training predict survival in patients with heart failure. International Journal of Cardiology, 2014, 171, 384-389.	0.8	15
50	Reduction of lymphocyte G protein-coupled receptor kinase-2 (GRK2) after exercise training predicts survival in patients with heart failure. European Journal of Preventive Cardiology, 2014, 21, 4-11.	0.8	71
51	Abstract 13888: Long-term Intermittent Fasting Treatment Improves Cardiac Function and Inotropic Reserve by Restoration of Cardiac Beta-adrenergic Signaling in an Experimental Model of Chronic Heart Failure. Circulation, 2014, 130, .	1.6	0
52	Prothymosin alpha protects cardiomyocytes against ischemia-induced apoptosis via preservation of Akt activation. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1252-1261.	2.2	30
53	Molecular aspects of the cardioprotective effect of exercise in the elderly. Aging Clinical and Experimental Research, 2013, 25, 487-497.	1.4	31
54	β-Adrenergic Receptors and G Protein-Coupled Receptor Kinase-2 in Alzheimer's Disease: A New Paradigm for Prognosis and Therapy?. Journal of Alzheimer's Disease, 2013, 34, 341-347.	1.2	31

#	Article	IF	CITATIONS
55	Risk of acute myocardial infarction after transurethral resection of prostate in elderly. BMC Surgery, 2013, 13, S35.	0.6	15
56	GRK2 blockade with βARKct is essential for cardiac β2-adrenergic receptor signaling towards increased contractility. Cell Communication and Signaling, 2013, 11, 64.	2.7	63
57	Vascular Endothelial Growth Factor Blockade Prevents the Beneficial Effects of β-Blocker Therapy on Cardiac Function, Angiogenesis, and Remodeling in Heart Failure. Circulation: Heart Failure, 2013, 6, 1259-1267.	1.6	49
58	Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy. Frontiers in Physiology, 2013, 4, 264.	1.3	95
59	Genetic Deletion of Uncoupling Protein 3 Exaggerates Apoptotic Cell Death in the Ischemic Heart Leading to Heart Failure. Journal of the American Heart Association, 2013, 2, e000086.	1.6	50
60	β ₁ -Adrenergic Receptor and Sphingosine-1-Phosphate Receptor 1 (S1PR1) Reciprocal Downregulation Influences Cardiac Hypertrophic Response and Progression to Heart Failure. Circulation, 2013, 128, 1612-1622.	1.6	69
61	Gene therapy for heart disease: molecular targets, vectors and modes of delivery to myocardium. Expert Review of Cardiovascular Therapy, 2013, 11, 999-1013.	0.6	7
62	Blockade of βâ€adrenoceptors restores the GRK2â€mediated adrenal α ₂ â€adrenoceptor–catecholamine production axis in heart failure. British Journal of Pharmacology, 2012, 166, 2430-2440.	2.7	59
63	Novel missense mutations and unexpected multiple changes of RYR1 gene in 75 malignant hyperthermia families. Clinical Genetics, 2011, 79, 438-447.	1.0	34
64	EGFR trans-activation by urotensin II receptor is mediated by β-arrestin recruitment and confers cardioprotection in pressure overload-induced cardiac hypertrophy. Basic Research in Cardiology, 2011, 106, 577-589.	2.5	68
65	Induction of Mitogen-Activated Protein Kinases Is Proportional to the Amount of Pressure Overload. Hypertension, 2010, 55, 137-143.	1.3	24