Ricardo Tapia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1891632/publications.pdf

Version: 2024-02-01

				201674	2	265206
ı	54		1,925	27		42
ı	papers		citations	h-index		g-index
ı						
		_				
	54		54	54		1838
	all docs		docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Early motor deficits in the phalangeal fine movements induced by chronic AMPA infusion in the rat spinal cord assessed by a novel method: Phalangeal tension recording test. Neuroscience Letters, 2020, 739, 135411.	2.1	O
2	Excitatory and Inhibitory Neuronal Circuits in the Spinal Cord and Their Role in the Control of Motor Neuron Function and Degeneration. ACS Chemical Neuroscience, 2018, 9, 211-216.	3 . 5	33
3	Tetanus toxin C-fragment protects against excitotoxic spinal motoneuron degeneration in vivo. Scientific Reports, 2018, 8, 16584.	3.3	7
4	Chronic infusion of SOD1 ^{G93A} astrocyteâ€secreted factors induces spinal motoneuron degeneration and neuromuscular dysfunction in healthy rats. Journal of Cellular Physiology, 2017, 232, 2610-2615.	4.1	21
5	Chronic GABAergic blockade in the spinal cord inÂvivo induces motor alterations and neurodegeneration. Neuropharmacology, 2017, 117, 85-92.	4.1	8
6	Quercetin prevents spinal motor neuron degeneration induced by chronic excitotoxic stimulus by a sirtuin 1-dependent mechanism. Translational Neurodegeneration, 2017, 6, 31.	8.0	24
7	Motor Alterations Induced by Chronic 4-Aminopyridine Infusion in the Spinal Cord In vivo: Role of Glutamate and GABA Receptors. Frontiers in Neuroscience, 2016, 10, 200.	2.8	8
8	Mitochondrial Dysfunction during the Early Stages of Excitotoxic Spinal Motor Neuron Degeneration in Vivo. ACS Chemical Neuroscience, 2016, 7, 886-896.	3. 5	18
9	Neuropathological characterization of spinal motor neuron degeneration processes induced by acute and chronic excitotoxic stimulus in vivo. Neuroscience, 2016, 331, 78-90.	2.3	9
10	Degeneration of spinal motor neurons by chronic AMPA-induced excitotoxicity in vivo and protection by energy substrates. Acta Neuropathologica Communications, 2015, 3, 27.	5.2	29
11	Epilepsy and hippocampal neurodegeneration induced by glutamate decarboxylase inhibitors in awake rats. Epilepsy Research, 2015, 116, 27-33.	1.6	9
12	Trophic factors as modulators of motor neuron physiology and survival: implications for ALS therapy. Frontiers in Cellular Neuroscience, 2014, 8, 61.	3.7	93
13	Energy Substrates Protect Hippocampus Against Endogenous Glutamate-Mediated Neurodegeneration in Awake Rats. Neurochemical Research, 2014, 39, 1346-1354.	3.3	6
14	Spinal inhibitory circuits and their role in motor neuron degeneration. Neuropharmacology, 2014, 82, 101-107.	4.1	36
15	Role of Energy Metabolic Deficits and Oxidative Stress in Excitotoxic Spinal Motor Neuron Degeneration <i>in Vivo</i> . ASN Neuro, 2014, 6, AN20130046.	2.7	17
16	Histone deacetylases and their role in motor neuron degeneration. Frontiers in Cellular Neuroscience, 2013, 7, 243.	3.7	44
17	Delayed Administration of VEGF Rescues Spinal Motor Neurons from Death with a Short Effective Time Frame in Excitotoxic Experimental Models <i>in Vivo</i> . ASN Neuro, 2012, 4, AN20110057.	2.7	24
18	Activation of group III metabotropic glutamate receptors by endogenous glutamate protects against glutamateâ€mediated excitotoxicity in the hippocampus in vivo. Journal of Neuroscience Research, 2012, 90, 1055-1066.	2.9	10

#	Article	IF	CITATIONS
19	Allopregnanolone Potentiates the Glutamate-Mediated Seizures Induced by 4-Aminopyridine in Rat Hippocampus in vivo. Neurochemical Research, 2012, 37, 596-603.	3.3	12
20	VEGF protects spinal motor neurons against chronic excitotoxic degeneration ⟨i⟩in vivo⟨/i⟩ by activation of PI3â€K pathway and inhibition of p38MAPK. Journal of Neurochemistry, 2010, 115, 1090-1101.	3.9	43
21	Experimental models for the study of neurodegeneration in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2009, 4, 31.	10.8	44
22	Chronic elevation of extracellular glutamate due to transport blockade is innocuous for spinal motoneurons in vivo. Neurochemistry International, 2009, 54, 186-191.	3.8	35
23	Calpain Inhibition Protects Spinal Motoneurons from the Excitotoxic Effects of AMPA InÂvivo. Neurochemical Research, 2008, 33, 1428-1434.	3.3	16
24	Relationships Among Seizures, Extracellular Amino Acid Changes, and Neurodegeneration Induced by 4-Aminopyridine in Rat Hippocampus: A Microdialysis and Electroencephalographic Study. Journal of Neurochemistry, 2008, 72, 2006-2014.	3.9	82
25	HSP70 expression protects against hippocampal neurodegeneration induced by endogenous glutamate in vivo. Neuropharmacology, 2008, 55, 1383-1390.	4.1	14
26	Vascular Endothelial Growth Factor Prevents Paralysis and Motoneuron Death in a Rat Model of Excitotoxic Spinal Cord Neurodegeneration. Journal of Neuropathology and Experimental Neurology, 2007, 66, 913-922.	1.7	67
27	Ca2+-permeable AMPA receptors and intracellular Ca2+ determine motoneuron vulnerability in rat spinal cord in vivo. Neuropharmacology, 2007, 52, 1219-1228.	4.1	66
28	Glutamate excitotoxicity and therapeutic targets for amyotrophic lateral sclerosis. Expert Opinion on Therapeutic Targets, 2007, 11 , $1415-1428$.	3.4	79
29	Cerebral neurons of transgenic ALS mice are vulnerable to glutamate release stimulation but not to increased extracellular glutamate due to transport blockade. Experimental Neurology, 2006, 199, 281-290.	4.1	12
30	LateN-methyl-d-aspartate receptor blockade rescues hippocampal neurons from excitotoxic stress and death after 4-aminopyridine-induced epilepsy. European Journal of Neuroscience, 2005, 22, 3067-3076.	2.6	33
31	Effects of Retigabine on the Neurodegeneration and Extracellular Glutamate Changes Induced by 4-Aminopyridine in Rat Hippocampus In Vivo. Neurochemical Research, 2005, 30, 1557-1565.	3.3	15
32	AMPA receptor activation, but not the accumulation of endogenous extracellular glutamate, induces paralysis and motor neuron death in rat spinal cord in vivo. Journal of Neurochemistry, 2004, 89, 988-997.	3.9	56
33	Biochemical Modulation of NMDA Receptors: Role in Conditioned Taste Aversion. Neurochemical Research, 2004, 29, 161-168.	3.3	22
34	Epilepsy, neurodegeneration, and extracellular glutamate in the hippocampus of awake and anesthetized rats treated with okadaic acid. Neurochemical Research, 2003, 28, 1517-1524.	3.3	16
35	Effects of neurosteroids on epileptiform activity induced by picrotoxin and 4-aminopyridine in the rat hippocampal slice. Epilepsy Research, 2003, 55, 71-82.	1.6	36
36	Expression of heat shock protein 70 induced by 4-aminopyridine through glutamate-mediated excitotoxic stress in rat hippocampus in vivo. Neuropharmacology, 2003, 45, 649-660.	4.1	21

#	Article	IF	CITATIONS
37	Okadaic Acid Induces Epileptic Seizures and Hyperphosphorylation of the NR2B Subunit of the NMDA Receptor in Rat Hippocampus in Vivo. Experimental Neurology, 2002, 177, 284-291.	4.1	15
38	Neurotoxic and synaptic effects of okadaic acid, an inhibitor of protein phosphatases. Neurochemical Research, 1999, 24, 1423-1430.	3.3	39
39	The Protein Phosphatase Inhibitor Okadaic Acid Induces Heat Shock Protein Expression and Neurodegeneration in Rat Hippocampusin Vivo. Experimental Neurology, 1998, 153, 242-254.	4.1	35
40	Glutamate Uptake Impairment and Neuronal Damage in Young and Aged Rats In Vivo. Journal of Neurochemistry, 1997, 69, 1151-1160.	3.9	63
41	Preferential stimulation of glutamate release by 4-aminopyridine in rat striatum in vivo. Neurochemistry International, 1996, 28, 35-40.	3.8	69
42	Protection by NMDA receptor antagonists against seizures induced by intracerebral administration of 4-aminopyridine. European Journal of Pharmacology, 1996, 305, 87-93.	3.5	43
43	Accumulation of Extracellular Glutamate by Inhibition of Its Uptake Is Not Sufficient for Inducing Neuronal Damage: An In Vivo Microdialysis Study. Journal of Neurochemistry, 1995, 64, 2262-2272.	3.9	139
44	Convulsions and inhibition of glutamate decarboxylase by pyridoxal phosphate-?-glutamyl hydrazone in the developing rat. Neurochemical Research, 1994, 19, 183-187.	3.3	9
45	Effects of excitotoxic lesions of the nucleus basalis magnocellularis on conditioned taste aversion and inhibitory avoidance in the rat. Pharmacology Biochemistry and Behavior, 1993, 45, 147-152.	2.9	28
46	Glutamate decarboxylase activity in the substantia nigra and the hippocampus of rats microinjected with inhibitors of the enzyme. Neurochemical Research, 1991, 16, 263-267.	3.3	7
47	Seizures and wet-dog shakes induced by 4-aminopyridine, and their potentiation by nifedipine. European Journal of Pharmacology, 1990, 178, 275-284.	3. 5	46
48	Release of acetylcholine, \hat{l}^3 -aminobutyrate, dopamine and glutamate, and activity of some related enzymes, in rat gustatory neocortex. Brain Research, 1990, 523, 100-104.	2.2	35
49	Mechanism of the calcium-dependent stimulation of transmitter release by 4-aminopyridine in synaptosomes. Brain Research, 1985, 361, 373-382.	2.2	62
50	Effect of 4-aminopyridine on transmitter release in synaptosomes. Brain Research, 1982, 250, 291-299.	2.2	99
51	Relationships between pyridoxal phosphate availability, activity of vitamin B6-dependent enzymes and convulsions. Brain Research, 1971, 29, 111-122.	2.2	36
52	CORRELATIVE CHANGES OF PYRIDOXAL KINASE PYRIDOXAL-5'-PHOSPHATE AND GLUTAMATE DECARBOXYLASE IN BRAIN, DURING DRUG-INDUCED CONVULSIONS. Annals of the New York Academy of Sciences, 1969, 166, 257-266.	3.8	59
53	Effects of various substituted hydrazones and hydrazines of pyridoxal-5'-phosphate on brain glutamate decarboxylase. Biochemical Pharmacology, 1969, 18, 145-152.	4.4	52
54	Formation of Â-Aminobutyric Acid (GABA) in Brain of Mice Treated with L-Glutamic Acid-Â-Hydrazide and Pyridoxal Phosphate-Â-Glutamyl Hydrazone Experimental Biology and Medicine, 1967, 126, 218-221.	2.4	24