Ingrid R Olson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1891460/publications.pdf Version: 2024-02-01

INCRID P OLSON

#	Article	IF	CITATIONS
1	The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain, 2007, 130, 1718-1731.	7.6	1,103
2	The parietal cortex and episodic memory: an attentional account. Nature Reviews Neuroscience, 2008, 9, 613-625.	10.2	1,007
3	Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain, 2013, 136, 1692-1707.	7.6	629
4	Organization of visual short-term memory Journal of Experimental Psychology: Learning Memory and Cognition, 2000, 26, 683-702.	0.9	454
5	Social cognition and the anterior temporal lobes: a review and theoretical framework. Social Cognitive and Affective Neuroscience, 2013, 8, 123-133.	3.0	339
6	Working Memory for Conjunctions Relies on the Medial Temporal Lobe. Journal of Neuroscience, 2006, 26, 4596-4601.	3.6	337
7	Facial Attractiveness Is Appraised in a Glance Emotion, 2005, 5, 498-502.	1.8	280
8	Parietal Lobe and Episodic Memory: Bilateral Damage Causes Impaired Free Recall of Autobiographical Memory. Journal of Neuroscience, 2007, 27, 14415-14423.	3.6	255
9	Social cognition and the anterior temporal lobes. NeuroImage, 2010, 49, 3452-3462.	4.2	225
10	Dissociation Between Memory Accuracy and Memory Confidence Following Bilateral Parietal Lesions. Cerebral Cortex, 2010, 20, 479-485.	2.9	204
11	Visual Working Memory Is Impaired when the Medial Temporal Lobe Is Damaged. Journal of Cognitive Neuroscience, 2006, 18, 1087-1097.	2.3	203
12	ls visual short-term memory object based? Rejection of the "strong-object―hypothesis. Perception & Psychophysics, 2002, 64, 1055-1067.	2.3	192
13	Beyond the FFA: The role of the ventral anterior temporal lobes in face processing. Neuropsychologia, 2014, 61, 65-79.	1.6	181
14	Development of the uncinate fasciculus: Implications for theory and developmental disorders. Developmental Cognitive Neuroscience, 2015, 14, 50-61.	4.0	166
15	Some surprising findings on the involvement of the parietal lobe in human memory. Neurobiology of Learning and Memory, 2009, 91, 155-165.	1.9	138
16	A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neuroscience Letters, 2010, 479, 312-316.	2.1	117
17	Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model. Journal of Cognitive Neuroscience, 2011, 23, 3209-3217.	2.3	117
18	The social network-network: size is predicted by brain structure and function in the amygdala and paralimbic regions. Social Cognitive and Affective Neuroscience, 2014, 9, 1962-1972.	3.0	114

#	Article	IF	CITATIONS
19	Understanding social hierarchies: The neural and psychological foundations of status perception. Social Neuroscience, 2015, 10, 527-550.	1.3	114
20	Sensory and semantic category subdivisions within the anterior temporal lobes. Neuropsychologia, 2011, 49, 3419-3429.	1.6	113
21	The right parietal lobe is critical for visual working memory. Neuropsychologia, 2008, 46, 1767-1774.	1.6	89
22	Robust learning of affective trait associations with faces when the hippocampus is damaged, but not when the amygdala and temporal pole are damaged. Social Cognitive and Affective Neuroscience, 2008, 3, 195-203.	3.0	88
23	The Original Social Network: White Matter and Social Cognition. Trends in Cognitive Sciences, 2018, 22, 504-516.	7.8	83
24	ls the posterior parietal lobe involved in working memory retrieval?. Neuropsychologia, 2008, 46, 1775-1786.	1.6	82
25	Improved Proper Name Recall in Aging after Electrical Stimulation of the Anterior Temporal Lobes. Frontiers in Aging Neuroscience, 2011, 3, 16.	3.4	79
26	Anterior temporal face patches: a meta-analysis and empirical study. Frontiers in Human Neuroscience, 2013, 7, 17.	2.0	79
27	Dynamic neural architecture for social knowledge retrieval. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3305-E3314.	7.1	76
28	Remembering "what―brings along "where―in visual working memory. Perception & Psychophysics, 2005, 67, 185-194.	2.3	74
29	Similarities and differences between parietal and frontal patients in autobiographical and constructed experience tasks. Neuropsychologia, 2010, 48, 1385-1393.	1.6	72
30	Visual short-term memory is not improved by training. Memory and Cognition, 2004, 32, 1326-1332.	1.6	67
31	Shifting Attention among Working Memory Representations: Testing Cue Type, Awareness, and Strategic Control. Quarterly Journal of Experimental Psychology, 2012, 65, 426-438.	1.1	67
32	The medial temporal lobe and visual working memory: Comparisons across tasks, delays, and visual similarity. Cognitive, Affective and Behavioral Neuroscience, 2008, 8, 32-40.	2.0	64
33	Knowledge is power: How conceptual knowledge transforms visual cognition. Psychonomic Bulletin and Review, 2014, 21, 843-860.	2.8	63
34	White matter pathways and social cognition. Neuroscience and Biobehavioral Reviews, 2018, 90, 350-370.	6.1	62
35	The ontogeny of relational memory and pattern separation. Developmental Science, 2018, 21, e12556.	2.4	62
36	Substance abuse and white matter: Findings, limitations, and future of diffusion tensor imaging research. Drug and Alcohol Dependence, 2019, 197, 288-298.	3.2	60

#	Article	IF	CITATIONS
37	What's Unique about Unique Entities? An fMRI Investigation of the Semantics of Famous Faces and Landmarks. Cerebral Cortex, 2012, 22, 2005-2015.	2.9	55
38	Impaired perception of mnemonic oldness, but not mnemonic newness, after parietal lobe damage. Neuropsychologia, 2014, 56, 409-417.	1.6	55
39	At the intersection of attention and memory: The mechanistic role of the posterior parietal lobe in working memory. Neuropsychologia, 2011, 49, 1306-1315.	1.6	54
40	Using perfusion fMRI to measure continuous changes in neural activity with learning. Brain and Cognition, 2006, 60, 262-271.	1.8	53
41	Multimodal mapping of the face connectome. Nature Human Behaviour, 2020, 4, 397-411.	12.0	53
42	A Guide to Representational Similarity Analysis for Social Neuroscience. Social Cognitive and Affective Neuroscience, 2019, 14, 1243-1253.	3.0	52
43	True memory, false memory, and subjective recollection deficits after focal parietal lobe lesions Neuropsychology, 2010, 24, 465-475.	1.3	51
44	Variation in White Matter Connectivity Predicts the Ability to Remember Faces and Discriminate Their Emotions. Journal of the International Neuropsychological Society, 2016, 22, 180-190.	1.8	50
45	Neural connections foster social connections: a diffusion-weighted imaging study of social networks. Social Cognitive and Affective Neuroscience, 2016, 11, 721-727.	3.0	46
46	Dissociable frontostriatal white matter connectivity underlies reward and motor impulsivity. NeuroImage, 2017, 150, 336-343.	4.2	43
47	Associative learning improves visual working memory performance Journal of Experimental Psychology: Human Perception and Performance, 2005, 31, 889-900.	0.9	41
48	Semantic memory: Distinct neural representations for abstractness and valence. Brain and Language, 2014, 130, 1-10.	1.6	32
49	More Than Meets the Eye: The Merging of Perceptual and Conceptual Knowledge in the Anterior Temporal Face Area. Frontiers in Human Neuroscience, 2016, 10, 189.	2.0	31
50	Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connectivity, 2020, 10, 331-354.	1.7	31
51	Characterization of Face-Selective Patches in Orbitofrontal Cortex. Frontiers in Human Neuroscience, 2016, 10, 279.	2.0	29
52	White matter structural connectivity and episodic memory in early childhood. Developmental Cognitive Neuroscience, 2017, 28, 41-53.	4.0	28
53	Development of Holistic Episodic Recollection. Psychological Science, 2019, 30, 1696-1706.	3.3	28
54	Individual differences in white matter microstructure predict semantic control. Cognitive, Affective and Behavioral Neuroscience, 2016, 16, 1003-1016.	2.0	27

#	Article	IF	CITATIONS
55	The Social Cerebellum: A Large-Scale Investigation of Functional and Structural Specificity and Connectivity. Cerebral Cortex, 2022, 32, 987-1003.	2.9	27
56	Inter-individual variation in fronto-temporal connectivity predicts the ability to learn different types of associations. Neurolmage, 2016, 132, 213-224.	4.2	26
57	Bilateral parietal cortex damage does not impair associative memory for paired stimuli. Cognitive Neuropsychology, 2009, 26, 606-619.	1.1	25
58	Fronto-temporal white matter connectivity predicts reversal learning errors. Frontiers in Human Neuroscience, 2015, 9, 343.	2.0	25
59	A large-scale structural and functional connectome of social mentalizing. NeuroImage, 2021, 236, 118115.	4.2	24
60	Converging evidence from fMRI and aphasia that the left temporoparietal cortex has an essential role in representing abstract semantic knowledge. Cortex, 2015, 69, 104-120.	2.4	23
61	Anhedonia and individual differences in orbitofrontal cortex sulcogyral morphology. Human Brain Mapping, 2016, 37, 3873-3881.	3.6	20
62	Short-Term Memory Depends on Dissociable Medial Temporal Lobe Regions in Amnestic Mild Cognitive Impairment. Cerebral Cortex, 2016, 26, 2006-2017.	2.9	20
63	Never forget a name: white matter connectivity predicts person memory. Brain Structure and Function, 2017, 222, 4187-4201.	2.3	20
64	Contingency of semantic generalization on episodic specificity varies across development. Current Biology, 2021, 31, 2690-2697.e5.	3.9	20
65	Pattern separation and pattern completion: Behaviorally separable processes?. Memory and Cognition, 2021, 49, 193-205.	1.6	17
66	Hippocampal signatures of awakeÂtargeted memory reactivation. Brain Structure and Function, 2019, 224, 713-726.	2.3	16
67	The contents of visual memory are only partly under volitional control. Memory and Cognition, 2008, 36, 1360-1369.	1.6	15
68	Good Things for Those Who Wait: Predictive Modeling Highlights Importance of Delay Discounting for Income Attainment. Frontiers in Psychology, 2018, 9, 1545.	2.1	14
69	The neural representation of social status in the extended faceâ€processing network. European Journal of Neuroscience, 2017, 46, 2795-2806.	2.6	13
70	A missing link in affect regulation: the cerebellum. Social Cognitive and Affective Neuroscience, 2022, 17, 1068-1081.	3.0	13
71	The end point of the ventral visual stream: face and non-face perceptual deficits following unilateral anterior temporal lobe damage. Neurocase, 2015, 21, 554-562.	0.6	12
72	White matter alterations in individuals experiencing attenuated positive psychotic symptoms. Microbial Biotechnology, 2018, 12, 372-379.	1.7	11

#	Article	IF	CITATIONS
73	Wired to be connected? Links between mobile technology engagement, intertemporal preference and frontostriatal white matter connectivity. Social Cognitive and Affective Neuroscience, 2019, 14, 367-379.	3.0	10
74	OUP accepted manuscript. Cerebral Cortex, 2022, , .	2.9	7
75	The relation between navigation strategy and associative memory: An individual differences approach Journal of Experimental Psychology: Learning Memory and Cognition, 2016, 42, 663-670.	0.9	6
76	Understanding relational binding in early childhood: Interacting effects of overlap and delay. Journal of Experimental Child Psychology, 2021, 208, 105152.	1.4	6
77	Distinct alterations in cerebellar connectivity with substantia nigra and ventral tegmental area in Parkinson's disease. Scientific Reports, 2022, 12, 3289.	3.3	6
78	Children show adult-like hippocampal pattern similarity for familiar but not novel events. Brain Research, 2022, 1791, 147991.	2.2	6
79	A calendar savant with episodic memory impairments. Neurocase, 2010, 16, 208-218.	0.6	4
80	A heuristic information cluster search approach for precise functional brain mapping. Human Brain Mapping, 2020, 41, 2263-2280.	3.6	3
81	The backbone network of dynamic functional connectivity. Network Neuroscience, 2021, 5, 851-873.	2.6	2
82	SymCog: An open-source toolkit for assessing human symbolic cognition. Behavior Research Methods, 2023, 55, 807-823.	4.0	2
83	Knowledge is power: How conceptual knowledge transforms visual cognition. , 2014, 21, 843.		1