Umesh Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1891290/publications.pdf

Version: 2024-02-01

		101496	76872
86	5,636	36	74
papers	citations	h-index	g-index
88	88	88	6773
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dendrimer toxicity: Let's meet the challenge. International Journal of Pharmaceutics, 2010, 394, 122-142.	2.6	627
2	Dendrimers:Â Novel Polymeric Nanoarchitectures for Solubility Enhancement. Biomacromolecules, 2006, 7, 649-658.	2.6	338
3	PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomaterialia, 2016, 43, 14-29.	4.1	296
4	Folate and Folateâ^'PEGâ^'PAMAM Dendrimers: Synthesis, Characterization, and Targeted Anticancer Drug Delivery Potential in Tumor Bearing Mice. Bioconjugate Chemistry, 2008, 19, 2239-2252.	1.8	292
5	A review of glycosylated carriers for drug delivery. Biomaterials, 2012, 33, 4166-4186.	5.7	232
6	PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Materials Today, 2015, 18, 565-572.	8.3	219
7	Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials, 2007, 28, 3349-3359.	5.7	212
8	Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs. Pharmaceutical Research, 2016, 33, 18-39.	1.7	185
9	Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discovery Today, 2017, 22, 314-326.	3.2	174
10	Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discovery Today, 2017, 22, 665-680.	3.2	165
11	Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Frontiers in Pharmacology, 2017, 8, 261.	1.6	149
12	Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Advanced Drug Delivery Reviews, 2010, 62, 478-490.	6.6	140
13	Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. Journal of Controlled Release, 2020, 327, 235-265.	4.8	137
14	Application of dendrimer–drug complexation in the enhancement of drug solubility and bioavailability. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 1035-1052.	1.5	120
15	Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. Biomaterials, 2009, 30, 3588-3596.	5.7	109
16	Ligand based dendritic systems for tumor targeting. International Journal of Pharmaceutics, 2008, 350, 3-13.	2.6	103
17	Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discovery Today, 2018, 23, 300-314.	3.2	100
18	Dendimer-Mediated Solubilization, Formulation Development and in Vitroâ^'in Vivo Assessment of Piroxicam. Molecular Pharmaceutics, 2009, 6, 940-950.	2.3	97

#	Article	IF	Citations
19	A review of in vitro–in vivo investigations on dendrimers: the novel nanoscopic drug carriers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2, 66-73.	1.7	92
20	Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. International Journal of Pharmaceutics, 2010, 393, 186-197.	2.6	91
21	Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics. International Journal of Pharmaceutics, 2017, 528, 88-99.	2.6	83
22	Self-Emulsifying Oral Lipid Drug Delivery Systems: Advances and Challenges. AAPS PharmSciTech, 2019, 20, 129.	1.5	81
23	Blood brain barrier: An overview on strategies in drug delivery, realistic <i>in vitro</i> modeling and <i>in vivo</i> live tracking. Tissue Barriers, 2016, 4, e1129476.	1.6	80
24	Dendronized nanoconjugates of lysine and folate for treatment of cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 500-509.	2.0	77
25	Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opinion on Drug Delivery, 2018, 15, 589-617.	2.4	74
26	Hyperbranched dendritic nano-carriers for topical delivery of dithranol. Journal of Drug Targeting, 2013, 21, 497-506.	2.1	71
27	PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 2016, 33, 159-193.	1.2	69
28	Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan. International Journal of Biological Macromolecules, 2017, 98, 810-819.	3.6	67
29	Surface-Engineered Dendrimers: a Solution for Toxicity Issues. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 141-166.	1.9	65
30	Pharmaceutical and Biomedical Potential of Surface Engineered Dendrimers. Critical Reviews in Therapeutic Drug Carrier Systems, 2007, 24, 257-306.	1.2	65
31	Chitosan Engineered PAMAM Dendrimers as Nanoconstructs for the Enhanced Anti-Cancer Potential and Improved In vivo Brain Pharmacokinetics of Temozolomide. Pharmaceutical Research, 2018, 35, 9.	1.7	64
32	Lactoferrin Coupled Lower Generation PAMAM Dendrimers for Brain Targeted Delivery of Memantine in Aluminum-Chloride-Induced Alzheimer's Disease in Mice. Bioconjugate Chemistry, 2019, 30, 2573-2583.	1.8	63
33	Polypropylene imine dendrimer mediated solubility enhancement: effect of pH and functional groups of hydrophobes. Journal of Pharmacy and Pharmaceutical Sciences, 2007, 10, 358-67.	0.9	53
34	Tumour and dendrimers: a review on drug delivery aspects. Journal of Pharmacy and Pharmacology, 2010, 60, 671-688.	1.2	50
35	Nano-Co-Delivery of Berberine and Anticancer Drug Using PLGA Nanoparticles: Exploration of Better Anticancer Activity and In Vivo Kinetics. Pharmaceutical Research, 2019, 36, 149.	1.7	49
36	Dendrimers as an Effective Nanocarrier in Cardiovascular Disease. Current Pharmaceutical Design, 2015, 21, 4519-4526.	0.9	44

#	Article	IF	CITATIONS
37	Intranasal Drug Delivery: A Non-Invasive Approach for the Better Delivery of Neurotherapeutics. Pharmaceutical Nanotechnology, 2018, 5, 203-214.	0.6	40
38	Boosted Memory and Improved Brain Bioavailability of Rivastigmine: Targeting Effort to the Brain Using Covalently Tethered Lower Generation PAMAM Dendrimers with Lactoferrin. Molecular Pharmaceutics, 2018, 15, 4538-4549.	2.3	36
39	Development and Characterization of Triazine Based Dendrimers for Delivery of Antitumor Agent. Journal of Nanoscience and Nanotechnology, 2010, 10, 8395-8404.	0.9	33
40	Conjugated and Entrapped HPMA-PLA Nano-Polymeric Micelles Based Dual Delivery of First Line Anti TB Drugs: Improved and Safe Drug Delivery against Sensitive and Resistant Mycobacterium Tuberculosis. Pharmaceutical Research, 2017, 34, 1944-1955.	1.7	30
41	Biodegradable nano-architectural PEGylated approach for the improved stability and anticancer efficacy of bendamustine. International Journal of Biological Macromolecules, 2016, 92, 1242-1251.	3.6	29
42	Smartly Engineered PEGylated Di-Block Nanopolymeric Micelles: Duo Delivery of Isoniazid and Rifampicin Against Mycobacterium tuberculosis. AAPS PharmSciTech, 2018, 19, 3237-3248.	1.5	27
43	Surface engineered and ligand anchored nanobioconjugate: An effective therapeutic approach for oral insulin delivery in experimental diabetic rats. Colloids and Surfaces B: Biointerfaces, 2015, 127, 172-181.	2.5	26
44	Dendrimer Donepezil Conjugates for Improved Brain Delivery and Better in Vivo Pharmacokinetics. ACS Omega, 2019, 4, 4519-4529.	1.6	26
45	Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly(propyleneimine) dendrimers. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	24
46	3D Printing Technology: A New Milestone in the Development of Pharmaceuticals. Current Pharmaceutical Design, 2019, 25, 937-945.	0.9	24
47	Bendamustine–PAMAM Conjugates for Improved Apoptosis, Efficacy, and <i>in Vivo</i> Pharmacokinetics: A Sustainable Delivery Tactic. Molecular Pharmaceutics, 2018, 15, 2084-2097.	2.3	20
48	HPMA-PLGA Based Nanoparticles for Effective In Vitro Delivery of Rifampicin. Pharmaceutical Research, 2019, 36, 19.	1.7	20
49	PEGylated Dendrimer Mediated Delivery of Bortezomib: Drug Conjugation versus Encapsulation. International Journal of Pharmaceutics, 2020, 584, 119389.	2.6	20
50	Role of targeted immunotherapy for pancreatic ductal adenocarcinoma (PDAC) treatment: An overview. International Immunopharmacology, 2021, 95, 107508.	1.7	19
51	MCM-41 Nanoparticles for Brain Delivery: Better Choline-Esterase and Amyloid Formation Inhibition with Improved Kinetics. ACS Biomaterials Science and Engineering, 2018, 4, 2860-2869.	2.6	18
52	Dendrimers and Its Biomedical Applications. , 2014, , 243-257.		17
53	Galactose-Anchored Gelatin Nanoparticles for Primaquine Delivery and Improved Pharmacokinetics: A Biodegradable and Safe Approach for Effective Antiplasmodial Activity against <i>P. falciparum</i> and <i>in Vivo</i> Hepatocyte Targeting. Molecular Pharmaceutics, 2017, 14, 3356-3369.	2.3	17
54	Heparin appended ADH-anionic polysaccharide nanoparticles for site-specific delivery of usnic acid. International Journal of Pharmaceutics, 2019, 557, 238-253.	2.6	17

#	Article	IF	Citations
55	Doxorubicin and Crocin Co-delivery by Polymeric Nanoparticles for Enhanced Anticancer Potential <i>In Vitro</i> and <i>In Vivo</i> ACS Applied Bio Materials, 2020, 3, 7789-7799.	2.3	17
56	Biotinylated HPMA centered polymeric nanoparticles for Bortezomib delivery. International Journal of Pharmaceutics, 2020, 579, 119173.	2.6	17
57	Behavioral and Biochemical Implications of Dendrimeric Rivastigmine in Memory-Deficit and Alzheimer's Induced Rodents. ACS Chemical Neuroscience, 2019, 10, 3789-3795.	1.7	16
58	HPMA-based polymeric conjugates in anticancer therapeutics. Drug Discovery Today, 2020, 25, 997-1012.	3.2	16
59	Development and optimization of paclitaxel loaded Eudragit/PLGA nanoparticles by simplex lattice mixture design: Exploration of improved hemocompatibility and in vivo kinetics. Biomedicine and Pharmacotherapy, 2021, 144, 112286.	2.5	14
60	Toxicity and biocompatibility aspects of dendrimers. , 2020, , 251-274.		13
61	Nose-to-brain drug delivery for the treatment of Alzheimer's disease: current advancements and challenges. Expert Opinion on Drug Delivery, 2022, 19, 87-102.	2.4	13
62	Polymeric Nanoparticles in Targeting and Delivery of Drugs. , 2017, , 223-255.		12
63	Polymeric Nanocarriers: A New Horizon for the Effective Management of Breast Cancer. Current Pharmaceutical Design, 2018, 23, 5315-5326.	0.9	12
64	Dendrimers as Effective Carriers for the Treatment of Brain Tumor., 2018,, 267-305.		11
65	Vitamin E TPGS based palatable, oxidatively and physically stable emulsion of microalgae DHA oil for infants, children and food fortification. Journal of Dispersion Science and Technology, 2020, 41, 1674-1689.	1.3	11
66	Dendrimer-drug Conjugates in Drug Delivery and Targeting. Pharmaceutical Nanotechnology, 2016, 3, 239-260.	0.6	10
67	Dendrimers - Reflections on host-guest interaction mechanism towards solubility enhancement. Asian Journal of Pharmaceutics (discontinued), 2009, 3, 188.	0.4	9
68	Polypropyleneimine and polyamidoamine dendrimer mediated enhanced solubilization of bortezomib: Comparison and evaluation of mechanistic aspects by thermodynamics and molecular simulations. Materials Science and Engineering C, 2017, 72, 611-619.	3.8	9
69	Glycine-Poly-L-Lactic Acid Copolymeric Nanoparticles for the Efficient Delivery of Bortezomib. Pharmaceutical Research, 2019, 36, 160.	1.7	9
70	Recent Biomedical Applications on Stem Cell Therapy: A Brief Overview. Current Stem Cell Research and Therapy, 2019, 14, 127-136.	0.6	9
71	Sialic Acid Conjugated Chitosan Nanoparticles: Modulation to Target Tumour Cells and Therapeutic Opportunities. AAPS PharmSciTech, 2022, 23, 10.	1.5	8
72	Lipid-dendrimer nanohybrid system or dendrosomes: evidences of enhanced encapsulation, solubilization, cellular uptake and cytotoxicity of bortezomib. Applied Nanoscience (Switzerland), 2020, 10, 4049-4062.	1.6	7

#	Article	IF	CITATIONS
73	Biodegradable nanoparticulate co-delivery of flavonoid and doxorubicin: Mechanistic exploration and evaluation of anticancer effect in vitro and in vivo. Biomaterials and Biosystems, 2021, 3, 100022.	1.0	7
74	Synthesis, Morphology, and Rheological Evaluation of HPMA (<i>N</i> -2-Hydroxypropyl) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 59 702 Td (N
7 5	Diagnostic and therapeutic applications of smart nanocomposite dendrimers. Frontiers in Bioscience - Landmark, 2021, 26, 518-536.	3.0	6
76	Oral drug delivery potential of dendrimers. , 2017, , 231-261.		5
77	Micelle-Based Drug Delivery for Brain Tumors. , 2018, , 307-326.		5
78	Radiolabeled PLGA Nanoparticles for Effective Targeting of Bendamustine in Tumor Bearing Mice. Pharmaceutical Research, 2018, 35, 200.	1.7	4
79	Theranostic Applications of Nanomaterials in the Field of Cardiovascular Diseases. Current Pharmaceutical Design, 2022, 28, 91-103.	0.9	3
80	Hyper-Branched Dendrimers in Drug Delivery and Solubilization. SOJ Pharmacy $\&$ Pharmaceutical Sciences, $0,$, .	0.1	2
81	Surface Engineered Dendrimers: A Potential Nanocarrier for the Effective Management of Glioblastoma Multiforme. Current Drug Metabolism, 2022, 23, .	0.7	2
82	PEGylated methotrexate based micellar conjugates for anticancer chemotherapy. Asian Journal of Pharmaceutics (discontinued), 2015, 9, 60.	0.4	1
83	Nanoparticles as nucleic acid delivery vectors. , 2017, , 13-42.		1
84	Polymeric Micelles. Polymers and Polymeric Composites, 2018, , 1-29.	0.6	1
85	Polymeric Micelles. Polymers and Polymeric Composites, 2019, , 73-101.	0.6	0
86	Extra-Pulmonary TB. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 91-116.	0.1	0