
Yawei Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1891149/publications.pdf Version: 2024-02-01

YANNEL GAO

#	Article	IF	CITATIONS
1	Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature, 2016, 537, 558-562.	13.7	538
2	<i>N</i> ⁶ -methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science, 2020, 367, 580-586.	6.0	406
3	Replacement of Oct4 by Tet1 during iPSC Induction Reveals an Important Role of DNA Methylation and Hydroxymethylation in Reprogramming. Cell Stem Cell, 2013, 12, 453-469.	5.2	321
4	Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nature Cell Biology, 2018, 20, 620-631.	4.6	292
5	Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discovery, 2016, 2, 16010.	3.1	165
6	N6-Deoxyadenosine Methylation in Mammalian Mitochondrial DNA. Molecular Cell, 2020, 78, 382-395.e8.	4.5	156
7	Protein Expression Landscape of Mouse Embryos during Pre-implantation Development. Cell Reports, 2017, 21, 3957-3969.	2.9	135
8	SIRT6 Controls Hematopoietic Stem Cell Homeostasis through Epigenetic Regulation of Wnt Signaling. Cell Stem Cell, 2016, 18, 495-507.	5.2	117
9	FTO mediates LINE1 m ⁶ A demethylation and chromatin regulation in mESCs and mouse development. Science, 2022, 376, 968-973.	6.0	97
10	Loss of YTHDF2-mediated m6A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration. Cell Research, 2018, 28, 1035-1038.	5.7	95
11	Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein and Cell, 2021, 12, 455-474.	4.8	84
12	Stabilization of ERK-Phosphorylated METTL3 by USP5 Increases m6A Methylation. Molecular Cell, 2020, 80, 633-647.e7.	4.5	83
13	Hierarchical Oct4 Binding in Concert with Primed Epigenetic Rearrangements during Somatic Cell Reprogramming. Cell Reports, 2016, 14, 1540-1554.	2.9	74
14	Inhibition of Aberrant DNA Re-methylation Improves Post-implantation Development of Somatic Cell Nuclear Transfer Embryos. Cell Stem Cell, 2018, 23, 426-435.e5.	5.2	72
15	The Combination of Tet1 with Oct4 Generates High-Quality Mouse-Induced Pluripotent Stem Cells. Stem Cells, 2015, 33, 686-698.	1.4	39
16	<scp>DCAF</scp> 13 promotes pluripotency by negatively regulating <scp>SUV</scp> 39H1 stability during early embryonic development. EMBO Journal, 2018, 37, .	3.5	39
17	Distinct H3K9me3 and DNA methylation modifications during mouse spermatogenesis. Journal of Biological Chemistry, 2019, 294, 18714-18725.	1.6	38
18	Maternal Sall4 Is Indispensable for Epigenetic Maturation of Mouse Oocytes. Journal of Biological Chemistry, 2017, 292, 1798-1807.	1.6	37

Yawei Gao

#	Article	IF	CITATIONS
19	Dcaf11 activates Zscan4-mediated alternative telomere lengthening in early embryos and embryonic stem cells. Cell Stem Cell, 2021, 28, 732-747.e9.	5.2	30
20	Nuclear Exosome Targeting Complex Core Factor Zcchc8 Regulates the Degradation of LINE1 RNA in Early Embryos and Embryonic Stem Cells. Cell Reports, 2019, 29, 2461-2472.e6.	2.9	28
21	N6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition. Nature Cell Biology, 2022, 24, 917-927.	4.6	28
22	Jump-seq: Genome-Wide Capture and Amplification of 5-Hydroxymethylcytosine Sites. Journal of the American Chemical Society, 2019, 141, 8694-8697.	6.6	26
23	Reprogramming competence of OCT factors is determined by transactivation domains. Science Advances, 2020, 6, .	4.7	25
24	Esrrb plays important roles in maintaining self-renewal of trophoblast stem cells (TSCs) and reprogramming somatic cells to induced TSCs. Journal of Molecular Cell Biology, 2019, 11, 463-473.	1.5	19
25	Baf60b-mediated ATM-p53 activation blocks cell identity conversion by sensing chromatin opening. Cell Research, 2017, 27, 642-656.	5.7	18
26	Unique Patterns of H3K4me3 and H3K27me3 in 2-Cell-like Embryonic Stem Cells. Stem Cell Reports, 2021, 16, 458-469.	2.3	18
27	Dynamic nucleosome organization after fertilization reveals regulatory factors for mouse zygotic genome activation. Cell Research, 2022, 32, 801-813.	5.7	14
28	DNA 5-Methylcytosine-Specific Amplification and Sequencing. Journal of the American Chemical Society, 2020, 142, 4539-4543.	6.6	13
29	Direct induction of neural progenitor cells transiently passes through a partially reprogrammed state. Biomaterials, 2017, 119, 53-67.	5.7	10
30	Epigenetic regulation of cell fate transition: learning from early embryo development and somatic cell reprogramming. Biology of Reproduction, 2022, 107, 183-195.	1.2	7
31	High throughput sequencing identifies an imprinted gene, Grb10, associated with the pluripotency state in nuclear transfer embryonic stem cells. Oncotarget, 2017, 8, 47344-47355.	0.8	5
32	Quality Control: H2A.X Links to Better iPSCs. Cell Stem Cell, 2014, 15, 259-260.	5.2	3