Sarah Shulda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1890746/publications.pdf

Version: 2024-02-01

	1040056	1125743
554	9	13
citations	h-index	g-index
		1005
18	18	1035
docs citations	times ranked	citing authors
	citations 18	554 9 citations h-index 18 18

#	Article	IF	CITATIONS
1	Reactive Vapor-Phase Additives toward Destabilizing Î ³ -Mg(BH ₄) ₂ for Improved Hydrogen Release. ACS Applied Energy Materials, 2022, 5, 1690-1700.	5.1	5
2	Formation of 6H-Ba ₃ Ce _{0.75} Mn _{2.25} O ₉ during Thermochemical Reduction of 12R-Ba ₄ CeMn ₃ O ₁₂ : Identification of a Polytype in the Ba(Ce,Mn)O ₃ Family. Inorganic Chemistry, 2022, 61, 6128-6137.	4.0	6
3	Cubes to Cubes: Organization of MgO Particles into One-Dimensional and Two-Dimensional Nanostructures. Crystal Growth and Design, 2021, 21, 4674-4682.	3.0	17
4	Fine-Tuning a Robust Metal–Organic Framework toward Enhanced Clean Energy Gas Storage. Journal of the American Chemical Society, 2021, 143, 18838-18843.	13.7	79
5	Structural resolution and mechanistic insight into hydrogen adsorption in flexible ZIF-7. Chemical Science, 2021, 12, 15620-15631.	7.4	18
6	Iridium Atoms Bonded to Crystalline Powder MgO: Characterization by Imaging and Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 459-468.	3.1	10
7	Colloidal three-dimensional covalent organic frameworks and their application as porous liquids. Journal of Materials Chemistry A, 2020, 8, 23455-23462.	10.3	37
8	Thermal Activation of a Copper-Loaded Covalent Organic Framework for Near-Ambient Temperature Hydrogen Storage and Delivery., 2020, 2, 227-232.		21
9	Characterization of Complex Interactions at the Gas–Solid Interface with in Situ Spectroscopy: The Case of Nitrogen-Functionalized Carbon. Journal of Physical Chemistry C, 2019, 123, 9074-9086.	3.1	17
10	2D and 3D Characterization of PtNi Nanowire Electrode Composition and Structure. ACS Applied Nano Materials, 2019, 2, 525-534.	5.0	10
11	Iridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts. ACS Catalysis, 2018, 8, 2111-2120.	11.2	166
12	Carbon Capture by Metal Oxides: Unleashing the Potential of the (111) Facet. Journal of the American Chemical Society, 2018, 140, 4736-4742.	13.7	83
13	Exceptional Oxygen Reduction Reaction Activity and Durability of Platinum–Nickel Nanowires through Synthesis and Post-Treatment Optimization. ACS Omega, 2017, 2, 1408-1418.	3.5	53
14	Modulation Excitation Spectroscopy with APhase-Sensitive Detection for ASurface AAnalysis., 2016,, 121-132.		1
15	Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures. Journal of Chemical Physics, 2016, 144, 144201.	3.0	29