Christopher Earls

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1890000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Data-driven discovery of Green's functions with human-understandable deep learning. Scientific Reports, 2022, 12, 4824.	1.6	16
2	A new engineering theory describing oblique free surface impact by flexible plates. Ocean Engineering, 2022, 256, 111473.	1.9	3
3	Bayesian inference approaches for the detection and characterization of hidden pitting corrosion. Mechanical Systems and Signal Processing, 2021, 154, 107545.	4.4	1
4	Validation Experiment of a Single-View Image-Sequence Algorithm to Identify Scale and Sea-State Characteristics. IEEE Journal of Oceanic Engineering, 2021, 46, 864-878.	2.1	1
5	Gaussian processes for shock test emulation. Reliability Engineering and System Safety, 2021, 212, 107624.	5.1	1
6	A principled approach to design using high fidelity fluid-structure interaction simulations. Finite Elements in Analysis and Design, 2021, 194, 103562.	1.7	4
7	Deep learning for classifying and characterizing atmospheric ducting within the maritime setting. Computers and Geosciences, 2021, 157, 104919.	2.0	5
8	Electrochemical tomography as a nondestructive technique to study localized corrosion of metals. Npj Materials Degradation, 2021, 5, .	2.6	5
9	Gaussian Process Regression for Estimating EM Ducting Within the Marine Atmospheric Boundary Layer. Radio Science, 2020, 55, e2019RS006890.	0.8	5
10	CU-BENs: A structural modeling finite element library. SoftwareX, 2020, 11, 100485.	1.2	2
11	A Subspace Pursuit Method to Infer Refractivity in the Marine Atmospheric Boundary Layer. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 5606-5617.	2.7	10
12	Characterizing Evaporation Ducts Within the Marine Atmospheric Boundary Layer Using Artificial Neural Networks. Radio Science, 2019, 54, 1181-1191.	0.8	9
13	Analysis of heterogeneous computing approaches to simulating heat transfer in heterogeneous material. Journal of Parallel and Distributed Computing, 2019, 133, 1-17.	2.7	5
14	Multi-parameter stochastic inversion for first and second moment mass properties of a model-scale ship with topside ice accumulation. Applied Ocean Research, 2019, 82, 143-157.	1.8	2
15	Stochastic inversion for the roll gyradius second moment mass property in ships at full-scale and model-scale. Applied Ocean Research, 2017, 63, 24-35.	1.8	3
16	Inverting for Maritime Environments Using Proper Orthogonal Bases From Sparsely Sampled Electromagnetic Propagation Data. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 7166-7176.	2.7	14
17	Optimized inspection design for the thermographic characterization of sub-pixel sized through cracks. NDT and E International, 2016, 82, 44-55.	1.7	4
18	Duct heights inferred from radar sea clutter using proper orthogonal bases. Radio Science, 2016, 51, 1614-1626.	0.8	10

CHRISTOPHER EARLS

#	Article	IF	CITATIONS
19	Reduced-order model tracking and interpolation to solve PDE-based Bayesian inverse problems. Inverse Problems, 2013, 29, 075014.	1.0	11
20	Simulating blast effects on steel beam-column members: Methods. Computers and Structures, 2011, 89, 2133-2148.	2.4	10
21	Model-based structural health monitoring of naval ship hulls. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 1137-1149.	3.4	37
22	Stochastic inverse identification of geometric imperfections in shell structures. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 2256-2267.	3.4	18
23	Air blast load generation for simulating structural response. Steel and Composite Structures, 2010, 10, 429-455.	1.3	17
24	Generalized finite element method using proper orthogonal decomposition. International Journal for Numerical Methods in Engineering, 2009, 79, 887-906.	1.5	35
25	A posteriori initial imperfection identification in shell buckling problems. Computer Methods in Applied Mechanics and Engineering, 2008, 198, 260-268.	3.4	17
26	Curved Steel I-Girder Bridge Response during Construction Loading: Effects of Web Plumbness. Journal of Bridge Engineering, 2007, 12, 485-493.	1.4	6
27	Bearing Capacity in Long-Span Tubular Truss Chords. Journal of Structural Engineering, 2007, 133, 356-367.	1.7	5
28	Minor Axis Moment-Thrust Response Behavior in Steel I-Shaped Members. Journal of Structural Engineering, 2006, 132, 1079-1086.	1.7	3
29	Construction of a Horizontally Curved Steel I-Girder Bridge. Part I: Erection Sequence. Journal of Bridge Engineering, 2006, 11, 81-90.	1.4	14
30	Construction of a Horizontally Curved Steel I-Girder Bridge. Part II: Inconsistent Detailing. Journal of Bridge Engineering, 2006, 11, 91-98.	1.4	16
31	Service Load Effective Compression Flange Width in Fiber Reinforced Polymer Deck Systems Acting Compositely with Steel Stringers. Journal of Composites for Construction, 2004, 8, 289-297.	1.7	25
32	Fatigue and Strength Performance of Concrete-Filled Steel-Grid Bridge Deck. Journal of Bridge Engineering, 2004, 9, 435-443.	1.4	4
33	Concrete-Steel Interfacial Bond Strength in Composite Flooring: Shoring and Form Removal. Practice Periodical on Structural Design and Construction, 2004, 9, 9-15.	0.7	0
34	Behavior of Field Splice Details in Precast Concrete-Filled Steel Grid Bridge Deck. Journal of Bridge Engineering, 2004, 9, 127-136.	1.4	1
35	Cross-Sectional Compactness and Bracing Requirements for HPS483W Girders. Journal of Structural Engineering, 2003, 129, 1569-1583.	1.7	24
36	Structural Ductility in Hybrid High Performance Steel Beams. Journal of Structural Engineering, 2003, 129, 1584-1595.	1.7	27

CHRISTOPHER EARLS

#	Article	IF	CITATIONS
37	Single Angle Geometric Axis Flexural Compactness Criteria: Horizontal Leg Tension. Journal of Structural Engineering, 2001, 127, 616-624.	1.7	10
38	Single angle geometric axis flexure I. Background and model verification. Journal of Constructional Steel Research, 2001, 57, 603-623.	1.7	13
39	Constant moment behavior of high-performance steel I-shaped beams. Journal of Constructional Steel Research, 2001, 57, 711-728.	1.7	22
40	Single angle geometric axis flexure. Journal of Constructional Steel Research, 2001, 57, 625-648.	1.7	5
41	Influence of Material Effects on Structural Ductility of Compact I-Shaped Beams. Journal of Structural Engineering, 2000, 126, 1268-1278.	1.7	26
42	Geometric Factors Influencing Structural Ductility in Compact I-Shaped Beams. Journal of Structural Engineering, 2000, 126, 780-789.	1.7	19