
Enrico Martinoia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1889603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Feed Your Friends: Do Plant Exudates Shape the Root Microbiome?. Trends in Plant Science, 2018, 23, 25-41.	8.8	1,256
2	Plant ABC proteins – a unified nomenclature and updated inventory. Trends in Plant Science, 2008, 13, 151-159.	8.8	652
3	PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proceedings of the United States of America, 2010, 107, 2355-2360.	7.1	614
4	The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant Journal, 2007, 50, 207-218.	5.7	593
5	Arsenic tolerance in <i>Arabidopsis</i> is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21187-21192.	7.1	555
6	Root exudates: the hidden part of plant defense. Trends in Plant Science, 2014, 19, 90-98.	8.8	537
7	Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany, 2006, 58, 83-102.	4.8	521
8	The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant Journal, 2012, 69, 278-288.	5.7	506
9	A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 2012, 483, 341-344.	27.8	502
10	Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant Journal, 2005, 44, 179-194.	5.7	496
11	A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15699-15704.	7.1	406
12	Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta, 1999, 208, 373-382.	3.2	402
13	Plant ABC Transporters. The Arabidopsis Book, 2011, 9, e0153.	0.5	401
14	Multifunctionality of plant ABC transporters – more than just detoxifiers. Planta, 2002, 214, 345-355.	3.2	394
15	Interactions among PIN-FORMED and P-Glycoprotein Auxin Transporters in Arabidopsis. Plant Cell, 2007, 19, 131-147.	6.6	387
16	Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotechnology, 2003, 21, 914-919.	17.5	381
17	ATP-dependent glutathione S-conjugate 'export' pump in the vacuolar membrane of plants. Nature, 1993, 364, 247-249.	27.8	374
18	The seco-iridoid pathway from Catharanthus roseus. Nature Communications, 2014, 5, 3606.	12.8	355

#	Article	IF	CITATIONS
19	Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 2010, 64, 1002-1017.	5.7	354
20	Cluster roots – an underground adaptation for survival in extreme environments. Trends in Plant Science, 2002, 7, 162-167.	8.8	352
21	AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant Journal, 2010, 63, 1054-1062.	5.7	314
22	Vacuoles as storage compartments for nitrate in barley leaves. Nature, 1981, 289, 292-294.	27.8	306
23	Physiological Aspects of Cluster Root Function and Development in Phosphorus-deficient White Lupin (Lupinus albus L.). Annals of Botany, 2000, 85, 909-919.	2.9	304
24	Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant's Lifestyle. Molecular Plant, 2016, 9, 338-355.	8.3	302
25	FROM VACUOLAR GS-X PUMPS TO MULTISPECIFIC ABC TRANSPORTERS. Annual Review of Plant Biology, 1998, 49, 727-760.	14.3	292
26	Identification of a Vacuolar Sucrose Transporter in Barley and Arabidopsis Mesophyll Cells by a Tonoplast Proteomic Approach. Plant Physiology, 2006, 141, 196-207.	4.8	288
27	Molecular Identification and Physiological Characterization of a Novel Monosaccharide Transporter from Arabidopsis Involved in Vacuolar Sugar Transport. Plant Cell, 2007, 18, 3476-3490.	6.6	274
28	<i>Arabidopsis</i> ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7150-7155.	7.1	271
29	AtATM3 Is Involved in Heavy Metal Resistance in Arabidopsis. Plant Physiology, 2006, 140, 922-932.	4.8	270
30	An ABCâ€transporter ofArabidopsis thalianahas both glutathioneâ€conjugate and chlorophyll catabolite transport activity. Plant Journal, 1998, 13, 773-780.	5.7	269
31	AtABCG29 Is a Monolignol Transporter Involved in Lignin Biosynthesis. Current Biology, 2012, 22, 1207-1212.	3.9	265
32	An ABC Transporter Mutation Alters Root Exudation of Phytochemicals That Provoke an Overhaul of Natural Soil Microbiota Â. Plant Physiology, 2009, 151, 2006-2017.	4.8	263
33	AtMRP2, an Arabidopsis ATP Binding Cassette Transporter Able to Transport Glutathione S-Conjugates and Chlorophyll Catabolites: Functional Comparisons with AtMRP1. Plant Cell, 1998, 10, 267-282.	6.6	255
34	ArabidopsisÂWAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nature Communications, 2013, 4, 2625.	12.8	249
35	No Evidence for Cerium Dioxide Nanoparticle Translocation in Maize Plants. Environmental Science & Technology, 2010, 44, 8718-8723.	10.0	246
36	The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nature Cell Biology, 2008, 10, 1217-1223.	10.3	243

#	Article	IF	CITATIONS
37	Orthologs of the Class A4 Heat Shock Transcription Factor HsfA4a Confer Cadmium Tolerance in Wheat and Rice Â. Plant Cell, 2010, 21, 4031-4043.	6.6	240
38	The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Letters, 2006, 580, 1112-1122.	2.8	239
39	The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant Journal, 2007, 52, 1169-1180.	5.7	235
40	Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology, 2002, 50, 587-597.	3.9	229
41	Antisense Inhibition of the Iron-Sulphur Subunit of Succinate Dehydrogenase Enhances Photosynthesis and Growth in Tomato via an Organic Acid–Mediated Effect on Stomatal Aperture Â. Plant Cell, 2011, 23, 600-627.	6.6	221
42	Hyperaccumulation of Cadmium and Zinc in Thlaspi caerulescens and Arabidopsis halleri at the Leaf Cellular Level. Plant Physiology, 2004, 134, 716-725.	4.8	218
43	ABCC1, an ATP Binding Cassette Protein from Grape Berry, Transports Anthocyanidin 3- <i>O</i> -Glucosides. Plant Cell, 2013, 25, 1840-1854.	6.6	218
44	SWEET17, a Facilitative Transporter, Mediates Fructose Transport across the Tonoplast of Arabidopsis Roots and Leaves Â. Plant Physiology, 2014, 164, 777-789.	4.8	212
45	Vacuolar Transporters in Their Physiological Context. Annual Review of Plant Biology, 2012, 63, 183-213.	18.7	210
46	The ATP-Binding Cassette Transporters: Structure, Function, and Gene Family Comparison between Rice and Arabidopsis. Plant Physiology, 2003, 131, 1169-1177.	4.8	209
47	MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Letters, 2005, 579, 5399-5406.	2.8	202
48	A Novel Family of Cys-Rich Membrane Proteins Mediates Cadmium Resistance in Arabidopsis. Plant Physiology, 2004, 135, 1027-1039.	4.8	197
49	AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nature Communications, 2013, 4, 1804.	12.8	196
50	The ACA4 Gene of Arabidopsis Encodes a Vacuolar Membrane Calcium Pump That Improves Salt Tolerance in Yeast. Plant Physiology, 2000, 124, 1814-1827.	4.8	194
51	Abscisic acid transporters cooperate to control seed germination. Nature Communications, 2015, 6, 8113.	12.8	193
52	Flavonoids Redirect PIN-mediated Polar Auxin Fluxes during Root Gravitropic Responses. Journal of Biological Chemistry, 2008, 283, 31218-31226.	3.4	187
53	Functions of ABC transporters in plant growth and development. Current Opinion in Plant Biology, 2018, 41, 32-38.	7.1	186
54	The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant Journal, 2003, 33, 119-129.	5.7	185

#	Article	IF	CITATIONS
55	Transport Processes of Solutes across the Vacuolar Membrane of Higher Plants. Plant and Cell Physiology, 2000, 41, 1175-1186.	3.1	183
56	<i>Arabidopsis PIS1</i> encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10749-10753.	7.1	183
57	The Arabidopsis ATP-binding Cassette Protein AtMRP5/AtABCC5 Is a High Affinity Inositol Hexakisphosphate Transporter Involved in Guard Cell Signaling and Phytate Storage. Journal of Biological Chemistry, 2009, 284, 33614-33622.	3.4	177
58	Loss of AtPDR8, a Plasma Membrane ABC Transporter of Arabidopsis thaliana, Causes Hypersensitive Cell Death Upon Pathogen Infection. Plant and Cell Physiology, 2006, 47, 309-318.	3.1	171
59	<i>Arabidopsis</i> PCR2 Is a Zinc Exporter Involved in Both Zinc Extrusion and Long-Distance Zinc Transport. Plant Cell, 2010, 22, 2237-2252.	6.6	170
60	Structural and functional diversity calls for a new classification of ABC transporters. FEBS Letters, 2020, 594, 3767-3775.	2.8	169
61	Impaired pH Homeostasis in Arabidopsis Lacking the Vacuolar Dicarboxylate Transporter and Analysis of Carboxylic Acid Transport across the Tonoplast. Plant Physiology, 2005, 137, 901-910.	4.8	168
62	AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant Journal, 2009, 58, 737-753.	5.7	167
63	The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11122-11126.	7.1	162
64	Modulation of P-glycoproteins by Auxin Transport Inhibitors Is Mediated by Interaction with Immunophilins. Journal of Biological Chemistry, 2008, 283, 21817-21826.	3.4	162
65	White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant, Cell and Environment, 2006, 29, 919-927.	5.7	160
66	Malate. Jack of all trades or master of a few?. Phytochemistry, 2009, 70, 828-832.	2.9	160
67	Plant adaptations to severely phosphorus-impoverished soils. Current Opinion in Plant Biology, 2015, 25, 23-31.	7.1	157
68	A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. Plant Journal, 2007, 49, 889-898.	5.7	145
69	Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant Journal, 2011, 67, 247-257.	5.7	143
70	Disruption ofAtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility. Plant Journal, 2004, 39, 219-236.	5.7	141
71	AtMRP2, and Arabidopsis ATP Binding Cassette Transporter Able to Transport Glutathione S-Conjugates and Chlorophyll Catabolites: Functional Comparisons with AtMRP1. Plant Cell, 1998, 10, 267.	6.6	140
72	Functional Expression of a Bacterial Heavy Metal Transporter in Arabidopsis Enhances Resistance to and Decreases Uptake of Heavy Metals Â. Plant Physiology, 2003, 133, 589-596.	4.8	136

#	Article	IF	CITATIONS
73	Phytochelatin–metal(loid) transport into vacuoles shows different substrate preferences in barley and <i><scp>A</scp>rabidopsis</i> . Plant, Cell and Environment, 2014, 37, 1192-1201.	5.7	134
74	Plant hormone transporters: what we know and what we would like to know. BMC Biology, 2017, 15, 93.	3.8	129
75	Rapid Appearance of Photosynthetic Products in the Vacuoles Isolated from Barley Mesophyll Protoplasts by a New Fast Method. Zeitschrift Für Pflanzenphysiologie, 1982, 107, 103-113.	1.4	128
76	Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiologia Plantarum, 2010, 139, 170-180.	5.2	124
77	Flavone Glucoside Uptake into Barley Mesophyll and Arabidopsis Cell Culture Vacuoles. Energization Occurs by H+-Antiport and ATP-Binding Cassette-Type Mechanisms. Plant Physiology, 2002, 128, 726-733.	4.8	122
78	Different Energization Mechanisms Drive the Vacuolar Uptake of a Flavonoid Glucoside and a Herbicide Glucoside. Journal of Biological Chemistry, 1996, 271, 29666-29671.	3.4	120
79	The ATP Binding Cassette Transporter AtMRP5 Modulates Anion and Calcium Channel Activities in Arabidopsis Guard Cells. Journal of Biological Chemistry, 2007, 282, 1916-1924.	3.4	117
80	Asymmetric Localizations of the ABC Transporter PaPDR1 Trace Paths of Directional Strigolactone Transport. Current Biology, 2015, 25, 647-655.	3.9	117
81	Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. Plant Journal, 2012, 69, 529-541.	5.7	116
82	Characterization of Vacuolar Transport of the Endogenous Alkaloid Berberine in Coptis japonica. Plant Physiology, 2005, 138, 1939-1946.	4.8	115
83	The <i>fou2</i> mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium. Plant Journal, 2009, 58, 715-723.	5.7	115
84	Transporters in fruit vacuoles. Plant Biotechnology, 2007, 24, 127-133.	1.0	114
85	Vacuolar Transport of Abscisic Acid Glucosyl Ester Is Mediated by ATP-Binding Cassette and Proton-Antiport Mechanisms in Arabidopsis. Plant Physiology, 2013, 163, 1446-1458.	4.8	114
86	Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism. Plant Molecular Biology, 2004, 54, 817-835.	3.9	111
87	Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere, 2013, 90, 1478-1486.	8.2	111
88	Functions of ABC transporters in plants. Essays in Biochemistry, 2011, 50, 145-160.	4.7	110
89	Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biology and Biochemistry, 2008, 40, 1971-1974.	8.8	109
90	The role of ABCG-type ABC transporters in phytohormone transport. Biochemical Society Transactions, 2015, 43, 924-930.	3.4	104

#	Article	IF	CITATIONS
91	Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status. Planta, 2001, 213, 534-542.	3.2	103
92	AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 773-778.	7.1	103
93	Intra- and extra-cellular excretion of carboxylates. Trends in Plant Science, 2010, 15, 40-47.	8.8	102
94	Abscisic acid is a substrate of the <scp>ABC</scp> transporter encoded by the durable wheat disease resistance gene <i>Lr34</i> . New Phytologist, 2019, 223, 853-866.	7.3	102
95	ArabidopsisImmunophilin-like TWD1 Functionally Interacts with Vacuolar ABC Transporters. Molecular Biology of the Cell, 2004, 15, 3393-3405.	2.1	99
96	Plasma membrane H ⁺ â€ATPaseâ€dependent citrate exudation from cluster roots of phosphateâ€deficient white lupin. Plant, Cell and Environment, 2009, 32, 465-475.	5.7	99
97	Energy-dependent uptake of malate into vacuoles isolated from barley mesophyll protoplasts. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 806, 311-319.	1.0	98
98	Transport of Anions in Isolated Barley Vacuoles. Plant Physiology, 1986, 80, 895-901.	4.8	98
99	How Plants Dispose of Chlorophyll Catabolites. Journal of Biological Chemistry, 1996, 271, 27233-27236.	3.4	96
100	Toward the Storage Metabolome: Profiling the Barley Vacuole Â. Plant Physiology, 2011, 157, 1469-1482.	4.8	92
101	Phosphatidylinositol 4,5â€bisphosphate is important for stomatal opening. Plant Journal, 2007, 52, 803-816.	5.7	90
102	A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugates. Plant Journal, 2000, 21, 289-304.	5.7	89
103	Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environment International, 2005, 31, 263-267.	10.0	89
104	Tonoplast-localized Abc2 Transporter Mediates Phytochelatin Accumulation in Vacuoles and Confers Cadmium Tolerance. Journal of Biological Chemistry, 2010, 285, 40416-40426.	3.4	87
105	A herbicide antidote (safener) induces the activity of both the herbicide detoxifying enzyme and of a vacuolar transporter for the detoxified herbicide. FEBS Letters, 1994, 352, 219-221.	2.8	84
106	Transport and Sorting of the <i>Solanum tuberosum</i> Sucrose Transporter SUT1 Is Affected by Posttranslational Modification. Plant Cell, 2008, 20, 2497-2513.	6.6	83
107	Organellar channels and transporters. Cell Calcium, 2015, 58, 1-10.	2.4	83
108	ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis. Plant Cell, 2017, 29, 2552-2569.	6.6	80

#	Article	IF	CITATIONS
109	The ATP-binding cassette (ABC) transporter Bpt1p mediates vacuolar sequestration of glutathione conjugates in yeast. FEBS Letters, 2002, 520, 63-67.	2.8	78
110	Novel Tonoplast Transporters Identified Using a Proteomic Approach with Vacuoles Isolated from Cauliflower Buds. Plant Physiology, 2007, 145, 216-229.	4.8	78
111	Active Transport of Sulfate into the Vacuole of Plant Cells Provides Halotolerance and Can Detoxify SO2. Journal of Plant Physiology, 1989, 133, 756-763.	3.5	77
112	AtOSA1, a Member of the Abc1-Like Family, as a New Factor in Cadmium and Oxidative Stress Response Â. Plant Physiology, 2008, 147, 719-731.	4.8	77
113	Enhanced Photosynthesis and Growth in <i>atquac1</i> Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance. Plant Physiology, 2016, 170, 86-101.	4.8	77
114	Vacuolar Transporters – Companions on a Longtime Journey. Plant Physiology, 2018, 176, 1384-1407.	4.8	77
115	Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana. Planta, 2002, 216, 107-119.	3.2	76
116	Citrate transport into barley mesophyll vacuoles ? comparison with malate-uptake activity. Planta, 1991, 184, 532-7.	3.2	75
117	Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid. Science Signaling, 2014, 7, ra65.	3.6	74
118	Quantitative detection of changes in the leafâ€nesophyll tonoplast proteome in dependency of a cadmium exposure of barley (<i>Hordeum vulgare</i> L.) plants. Proteomics, 2009, 9, 2668-2677.	2.2	73
119	Flux of SO2 into Leaf Cells and Cellular Acidification by SO2. Plant Physiology, 1987, 85, 928-933.	4.8	72
120	An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants, 2017, 3, 17073.	9.3	72
121	<i>Arabidopsis</i> ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5712-E5720.	7.1	71
122	Expression analysis and functional characterization of the monosaccharide transporters, <i>OsTMTs</i> , involving vacuolar sugar transport in rice (<i>Oryza sativa</i>). New Phytologist, 2010, 186, 657-668.	7.3	69
123	Vacuolar Transporters for Cadmium and Arsenic in Plants and their Applications in Phytoremediation and Crop Development. Plant and Cell Physiology, 2018, 59, 1317-1325.	3.1	69
124	Genome-wide analysis of ATP binding cassette (ABC) transporters in tomato. PLoS ONE, 2018, 13, e0200854.	2.5	68
125	Amino Acid Transport across the Tonoplast of Vacuoles Isolated from Barley Mesophyll Protoplasts. Plant Physiology, 1990, 92, 123-129.	4.8	66
126	Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and clusterâ€root stage. New Phytologist, 2006, 171, 657-668.	7.3	65

#	Article	IF	CITATIONS
127	Engineering rice with lower grain arsenic. Plant Biotechnology Journal, 2018, 16, 1691-1699.	8.3	64
128	Secretion activity of white lupin's cluster roots influences bacterial abundance, function and community structure. Plant and Soil, 2005, 268, 181-194.	3.7	60
129	Multiomics in Grape Berry Skin Revealed Specific Induction of the Stilbene Synthetic Pathway by Ultraviolet-C Irradiation. Plant Physiology, 2015, 168, 47-59.	4.8	60
130	A proteomics approach to investigate the process of <scp>Z</scp> n hyperaccumulation in <i><scp>N</scp>occaea caerulescens</i> (<scp>J</scp> & <scp>C</scp> . <scp>P</scp> resl) <scp>F</scp> . <scp>K</scp> . <scp>M</scp> eyer. Plant Journal, 2013, 73, 131-142.	5.7	59
131	Subcellular localization of acid proteinase in barley mesophyll protoplasts. Planta, 1981, 151, 198-200.	3.2	57
132	Sugar Transport across the Plasmalemma and the Tonoplast of Barley Mesophyll Protoplasts. Evidence for Different Transport Systems. Journal of Plant Physiology, 1987, 131, 467-478.	3.5	57
133	The importance of strigolactone transport regulation for symbiotic signaling and shoot branching. Planta, 2016, 243, 1351-1360.	3.2	57
134	Rice <scp>PCR1</scp> influences grain weight and <scp>Z</scp> n accumulation in grains. Plant, Cell and Environment, 2015, 38, 2327-2339.	5.7	56
135	Root avoidance of toxic metals requires the GeBPâ€LIKE 4 transcription factor in <i>Arabidopsis thaliana</i> . New Phytologist, 2017, 213, 1257-1273.	7.3	56
136	Differential expression of genes coding for ABC transporters after treatment ofArabidopsis thalianawith xenobiotics. FEBS Letters, 1997, 411, 206-210.	2.8	54
137	Spatio-temporal dynamics of bacterial communities associated with two plant species differing in organic acid secretion: A one-year microcosm study on lupin and wheat. Soil Biology and Biochemistry, 2008, 40, 1772-1780.	8.8	54
138	Safety of food crops on land contaminated with trace elements. Journal of the Science of Food and Agriculture, 2011, 91, 1349-1366.	3.5	54
139	Expression and distribution of a vacuolar aquaporin in young and mature leaf tissues of Brassica napus in relation to water fluxes. Planta, 2001, 212, 270-278.	3.2	52
140	Phosphorus deficiency-induced modifications in citrate catabolism and in cytosolic pH as related to citrate exudation in cluster roots of white lupin. Plant and Soil, 2003, 248, 117-127.	3.7	52
141	Mesophyll Resistances to SO2 Fluxes into Leaves. Plant Physiology, 1987, 85, 922-927.	4.8	49
142	Proton pumps and anion transport in Vitis vinifera: The inorganic pyrophosphatase plays a predominant role in the energization of the tonoplast. Plant Physiology and Biochemistry, 1998, 36, 367-377.	5.8	49
143	Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis. Plant Journal, 2012, 72, 732-744.	5.7	49
144	Cytokinin Transporters: GO and STOP in Signaling. Trends in Plant Science, 2017, 22, 455-461.	8.8	49

#	Article	IF	CITATIONS
145	C-Terminus-Mediated Voltage Gating of Arabidopsis Guard Cell Anion Channel QUAC1. Molecular Plant, 2013, 6, 1550-1563.	8.3	48
146	Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphateâ€poor soils. New Phytologist, 2018, 217, 784-798.	7.3	48
147	2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. Plant Physiology, 2021, 187, 1876-1892.	4.8	48
148	Thylakoid-associated «Chlorophyll Oxidase»: Distinction from Lipoxygenase. Zeitschrift Für Pflanzenphysiologie, 1984, 113, 423-434.	1.4	47
149	<i>In vivo</i> phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach. Proteomics, 2009, 9, 310-321.	2.2	47
150	Postmeiotic development of pollen surface layers requires two Arabidopsis ABCG-type transporters. Plant Cell Reports, 2016, 35, 1863-1873.	5.6	47
151	Plant Lessons: Exploring ABCB Functionality Through Structural Modeling. Frontiers in Plant Science, 2012, 2, 108.	3.6	46
152	The Vacuolar Transportome of Plant Specialized Metabolites. Plant and Cell Physiology, 2018, 59, 1326-1336.	3.1	46
153	<i>Brassica juncea</i> plant cadmium resistance 1 protein (BjPCR1) facilitates the radial transport of calcium in the root. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19808-19813.	7.1	45
154	Vacuolar Chloride Fluxes Impact Ion content and Distribution during Early Salinity Stress. Plant Physiology, 2016, 172, pp.00183.2016.	4.8	45
155	A rice Serine/Threonine receptor-like kinase regulates arbuscular mycorrhizal symbiosis at the peri-arbuscular membrane. Nature Communications, 2018, 9, 4677.	12.8	45
156	Mt <scp>ABCG</scp> 20 is an <scp>ABA</scp> exporter influencing root morphology and seed germination of <i>Medicago truncatula</i> . Plant Journal, 2019, 98, 511-523.	5.7	45
157	Directly Energized Uptake of β-Estradiol 17-(β-d-Glucuronide) in Plant Vacuoles Is Strongly Stimulated by Glutathione Conjugates. Journal of Biological Chemistry, 1998, 273, 262-270.	3.4	43
158	Common Functions or Only Phylogenetically Related? The Large Family of PLAC8 Motif-Containing/PCR Genes. Molecules and Cells, 2011, 31, 1-8.	2.6	43
159	The Full-Size ABCG Transporter of Medicago truncatula Is Involved in Strigolactone Secretion, Affecting Arbuscular Mycorrhiza. Frontiers in Plant Science, 2020, 11, 18.	3.6	43
160	Ideal Cereals With Lower Arsenic and Cadmium by Accurately Enhancing Vacuolar Sequestration Capacity. Frontiers in Genetics, 2019, 10, 322.	2.3	41
161	Transport of Oxidized Glutathione into Barley Vacuoles: Evidence for the Involvement of the Glutathione-S-Conjugate ATPase. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1993, 48, 867-871.	1.4	39
162	Functional reconstitution of the malate carrier of barley mesophyll vacuoles in liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1062, 271-278.	2.6	36

#	Article	IF	CITATIONS
163	Luminal and Cytosolic pH Feedback on Proton Pump Activity and ATP Affinity of V-type ATPase from Arabidopsis. Journal of Biological Chemistry, 2012, 287, 8986-8993.	3.4	36
164	ABCC transporters mediate the vacuolar accumulation of crocins in saffron stigmas. Plant Cell, 2019, 31, tpc.00193.2019.	6.6	36
165	<i>Arabidopsis</i> ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12540-12549.	7.1	36
166	Phosphate uptake across the tonoplast of intact vacuoles isolated from suspension-cultured cells of Catharanthus roseus (L.) G. Don. Planta, 2000, 211, 390-395.	3.2	35
167	<i>Petunia hybrida</i> PDR2 is involved in herbivore defense by controlling steroidal contents in trichomes. Plant, Cell and Environment, 2016, 39, 2725-2739.	5.7	34
168	Identification of a Probable Pore-Forming Domain in the Multimeric Vacuolar Anion Channel AtALMT9 Â Â. Plant Physiology, 2013, 163, 830-843.	4.8	31
169	Transport of Arginine and Aspartic Acid into Isolated Barley Mesophyll Vacuoles. Plant Physiology, 1991, 97, 644-650.	4.8	26
170	Reappearance of hydrolytic activities and tonoplast proteins in the regenerated vacuole of evacuolated protoplasts. Planta, 1992, 187, 113-21.	3.2	26
171	Factors affecting the re-formation of vacuoles in evacuolated protoplasts and the expression of the two vacuolar proton pumps. Planta, 1994, 192, 395-403.	3.2	26
172	Transport of lucifer yellow CH into plant vacuoles - evidence for direct energization of a sulphonated substance and implications for the design of new molecular probes. FEBS Letters, 1997, 420, 86-92.	2.8	26
173	Lipid Phosphorylation in Chloroplast Envelopes. Journal of Biological Chemistry, 2000, 275, 19475-19481.	3.4	26
174	The wheat ABC transporter Lr34 modifies the lipid environment at the plasma membrane. Journal of Biological Chemistry, 2018, 293, 18667-18679.	3.4	26
175	Wounding of Arabidopsis halleri leaves enhances cadmium accumulation that acts as a defense against herbivory. BioMetals, 2015, 28, 521-528.	4.1	25
176	Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway. IScience, 2019, 17, 144-154.	4.1	24
177	Vacuolar proton pumping: more than the sum of its parts?. Trends in Plant Science, 2014, 19, 344-346.	8.8	23
178	Plant vacuoles. Current Biology, 2015, 25, R136-R137.	3.9	22
179	ABCG36/PEN3/PDR8 Is an Exporter of the Auxin Precursor, Indole-3-Butyric Acid, and Involved in Auxin-Controlled Development. Frontiers in Plant Science, 2019, 10, 899.	3.6	22
180	Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9. Journal of Biological Chemistry, 2014, 289, 25581-25589.	3.4	20

#	Article	IF	CITATIONS
181	The Arabidopsis tonoplast is almost devoid of glycoproteins with complex <i>N</i> -glycans, unlike the rat lysosomal membrane. Journal of Experimental Botany, 2016, 67, 1769-1781.	4.8	20
182	Function of the Golgi-located phosphate transporter PHT4;6 is critical for senescence-associated processes in Arabidopsis. Journal of Experimental Botany, 2016, 67, 4671-4684.	4.8	19
183	Emerging Jasmonate Transporters. Molecular Plant, 2017, 10, 659-661.	8.3	19
184	ABC Transporters and Heavy Metals. Signaling and Communication in Plants, 2014, , 1-17.	0.7	18
185	Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles. Journal of Experimental Botany, 2011, 62, 2403-2410.	4.8	16
186	Non-intrinsic ATP-binding cassette proteins ABCI19, ABCI20 and ABCI21 modulate cytokinin response at the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell Reports, 2020, 39, 473-487.	5.6	16
187	Identification of amino acid residues important for the arsenic resistance function of <i>Arabidopsis </i> <scp>ABCC</scp> 1. FEBS Letters, 2017, 591, 656-666.	2.8	15
188	Identification of an Isoflavonoid Transporter Required for the Nodule Establishment of the Rhizobium-Fabaceae Symbiotic Interaction. Frontiers in Plant Science, 2021, 12, 758213.	3.6	12
189	The Multifaceted Roles of Plant Vacuoles. Plant and Cell Physiology, 2018, 59, 1285-1287.	3.1	8
190	Toward a Molecular Understanding of Plant Hormone Actions. Molecular Plant, 2016, 9, 1-3.	8.3	7
191	How to survive on low potassium. Nature Plants, 2020, 6, 332-333.	9.3	4
192	An ABC transporter of the ABCC subfamily localized at the plasma membrane confers glyphosate resistance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2104746118.	7.1	4
193	An evergreen mind and a heart for the colors of fall. Journal of Experimental Botany, 2021, 72, 4625-4633.	4.8	4
194	Transportomics for the Characterization of Plant Apocarotenoid Transmembrane Transporters. Methods in Molecular Biology, 2020, 2083, 89-99.	0.9	3
195	Arabidopsis <scp>ABCG27</scp> plays an essential role in flower and leaf development by modulating abscisic acid content. Physiologia Plantarum, 2022, 174, .	5.2	3
196	How Can We Interpret the Large Number and Diversity of ABA Transporters?. Progress in Botany Fortschritte Der Botanik, 2020, , 233-257.	0.3	1