
Graeme D Ruxton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1889583/publications.pdf Version: 2024-02-01

CRAEME D RUYTON

#	Article	IF	CITATIONS
1	Incorporating thermodynamics in predator–prey games predicts the diel foraging patterns of poikilothermic predators. Journal of Animal Ecology, 2022, 91, 527-539.	2.8	5
2	An ecological perspective on water shedding from leaves. Journal of Experimental Botany, 2022, 73, 1176-1189.	4.8	16
3	The multivariate analysis of variance as a powerful approach for circular data. Movement Ecology, 2022, 10, 21.	2.8	9
4	Turn alternation and the influence of environmental factors on search routes through branched structures by ladybirds (Coccinella septempunctata and Adalia bipunctata). Behavioural Processes, 2021, 182, 104292.	1.1	0
5	Evaluation of disruptive camouflage of avian cupâ€nests. Ibis, 2021, 163, 150-158.	1.9	7
6	Size-dependent predation risk in cryptic prey. Journal of Ethology, 2021, 39, 191-198.	0.8	9
7	How fast is a snail's pace? The influences of size and substrate on gastropod speed of locomotion. Journal of Zoology, 2021, 314, 12-19.	1.7	5
8	Drop when the stakes are high: adaptive, flexible use of dropping behaviour by aphids. Behaviour, 2021, 158, 603-623.	0.8	7
9	Post-Dropping Behavior of Potato Aphids (Macrosiphum euphorbiae). Journal of Insect Behavior, 2021, 34, 223-239.	0.7	4
10	Advice on comparing two independent samples of circular data in biology. Scientific Reports, 2021, 11, 20337.	3.3	31
11	Birdsbesafe® collar cover reduces bird predation by domestic cats (Felis catus). Journal of Zoology, 2020, 310, 106-109.	1.7	14
12	The dicey dinner dilemma: Asymmetry in predator–prey riskâ€ŧaking, a broadly applicable alternative to the lifeâ€dinner principle. Journal of Evolutionary Biology, 2020, 33, 377-383.	1.7	5
13	Effective use of the McNemar test. Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	69
14	The evolution of flight in bats: a novel hypothesis. Mammal Review, 2020, 50, 426-439.	4.8	20
15	Grouped circular data in biology: advice for effectively implementing statistical procedures. Behavioral Ecology and Sociobiology, 2020, 74, 100.	1.4	16
16	Do orientation and substrate influence apparent turning biases by the 7-spot ladybird, Coccinella septempunctata?. Behaviour, 2020, 157, 205-230.	0.8	2
17	Substantially inflated type I error rates if propensity score method is not fixed in advance. Communications in Statistics Case Studies Data Analysis and Applications, 2020, 6, 307-313.	0.3	1
18	Camouflage in predators, Biological Reviews, 2020, 95, 1325-1340,	10.4	45

2

#	Article	IF	CITATIONS
19	Avian distraction displays: a review. Ibis, 2020, 162, 1125-1145.	1.9	22
20	Fear of Killer Whales Drives Extreme Synchrony in Deep Diving Beaked Whales. Scientific Reports, 2020, 10, 13.	3.3	80
21	The demography of human warfare can drive sex differences in altruism. Evolutionary Human Sciences, 2020, 2, .	1.7	10
22	The effect of samara wing presence on predation of Acer pseudoplatanus (Sapindaceae) seeds on the ground. Plant Species Biology, 2020, 35, 158-161.	1.0	0
23	Revisiting advice on the analysis of count data. Methods in Ecology and Evolution, 2020, 11, 1133-1140.	5.2	3
24	Model selection versus traditional hypothesis testing in circular statistics: a simulation study. Biology Open, 2020, 9, .	1.2	4
25	The key role of behaviour in animal camouflage. Biological Reviews, 2019, 94, 116-134.	10.4	94
26	Underestimation of Pearson's product moment correlation statistic. Oecologia, 2019, 189, 1-7.	2.0	25
27	Deconstructing collective building in social insects: implications for ecological adaptation and evolution. Insectes Sociaux, 2019, 66, 507-518.	1.2	12
28	The Hermans–Rasson test as a powerful alternative to the Rayleigh test for circular statistics in biology. BMC Ecology, 2019, 19, 30.	3.0	69
29	Circular statistics meets practical limitations: a simulation-based Rao's spacing test for non-continuous data. Movement Ecology, 2019, 7, 15.	2.8	11
30	Secondary dispersal mechanisms of winged seeds: a review. Biological Reviews, 2019, 94, 1830-1838.	10.4	15
31	Aposematism: Unpacking the Defences. Trends in Ecology and Evolution, 2019, 34, 595-604.	8.7	46
32	A theory for investment across defences triggered at different stages of a predator-prey encounter. Journal of Theoretical Biology, 2019, 473, 9-19.	1.7	8
33	Adaptive suicide: is a kin-selected driver of fatal behaviours likely?. Biology Letters, 2019, 15, 20180823.	2.3	14
34	Dropping to escape: a review of an underâ€appreciated antipredator defence. Biological Reviews, 2019, 94, 575-589.	10.4	38
35	Mixedâ€species aggregations in arthropods. Insect Science, 2019, 26, 2-19.	3.0	43
36	The evolutionary stability of attenuators that mask information about animals that social partners can exploit. Journal of Evolutionary Biology, 2018, 31, 675-686.	1.7	2

#	Article	IF	CITATIONS
37	A non-parametric maximum test for the Behrens–Fisher problem. Journal of Statistical Computation and Simulation, 2018, 88, 1336-1347.	1.2	5
38	What is known and what is not yet known about deflection of the point of a predator's attack. Biological Journal of the Linnean Society, 2018, 123, 483-495.	1.6	17
39	A review of thanatosis (death feigning) as an anti-predator behaviour. Behavioral Ecology and Sociobiology, 2018, 72, 22.	1.4	134
40	Using Biological Insight and Pragmatism When Thinking about Pseudoreplication. Trends in Ecology and Evolution, 2018, 33, 28-35.	8.7	64
41	Some comments on the update to <i>BJP</i> guidance on experimental design and analysis. British Journal of Pharmacology, 2018, 175, 3638-3639.	5.4	5
42	The number of strata in propensity score stratification for a binary outcome. Archives of Medical Science, 2018, 14, 695-700.	0.9	9
43	Circular data in biology: advice for effectively implementing statistical procedures. Behavioral Ecology and Sociobiology, 2018, 72, 128.	1.4	115
44	Why war is a man's game. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180975.	2.6	14
45	Statistical tests for the comparison of two samples: The general alternative. Communications in Statistics Part B: Simulation and Computation, 2017, 46, 903-909.	1.2	10
46	Testing for departure from uniformity and estimating mean direction for circular data. Biology Letters, 2017, 13, 20160756.	2.3	28
47	A continued role for signaling functions in the early evolution of feathers. Evolution; International Journal of Organic Evolution, 2017, 71, 797-799.	2.3	6
48	Intrafamily and intragenomic conflicts in human warfare. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162699.	2.6	19
49	Statistical model specification and power: recommendations on the use of test-qualified pooling in analysis of experimental data. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20161850.	2.6	23
50	Allocation concealment as a potentially useful aspect of randomised experiments. Behavioral Ecology and Sociobiology, 2017, 71, 1.	1.4	4
51	A recipe for scavenging in vertebrates – the natural history of a behaviour. Ecography, 2017, 40, 324-334.	4.5	34
52	Consequences of grouped data for testing for departure from circular uniformity. Behavioral Ecology and Sociobiology, 2017, 71, 167.	1.4	11
53	The Impact of Detoxification Costs and Predation Risk on Foraging: Implications for Mimicry Dynamics. PLoS ONE, 2017, 12, e0169043.	2.5	6
54	The effect of aggregation on visibility in open water. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161463.	2.6	10

#	Article	IF	CITATIONS
55	Floral colour change as a potential signal to pollinators. Current Opinion in Plant Biology, 2016, 32, 96-100.	7.1	22
56	Optimizing countershading camouflage. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13093-13097.	7.1	40
57	Investment in attending to cues and the evolution of amplifiers. Journal of Evolutionary Biology, 2016, 29, 1131-1141.	1.7	3
58	Orientation to the sun by animals and its interaction with crypsis. Functional Ecology, 2015, 29, 1165-1177.	3.6	31
59	On the variety of methods for calculating confidence intervals by bootstrapping. Journal of Animal Ecology, 2015, 84, 892-897.	2.8	85
60	Coevolution can explain defensive secondary metabolite diversity in plants. New Phytologist, 2015, 208, 1251-1263.	7.3	71
61	The evolutionary ecology of decorating behaviour. Biology Letters, 2015, 11, 20150325.	2.3	37
62	Signal Diversity, Sexual Selection, and Speciation. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 573-592.	8.3	37
63	Consequences of variation in predator attack for the evolution of the selfish herd. Evolutionary Ecology, 2015, 29, 107-121.	1.2	10
64	Fenestration: a window of opportunity for carnivorous plants. Biology Letters, 2014, 10, 20140134.	2.3	13
65	Energetic arguments predict larger-bodied animals will be increasingly confined to flat environments. Journal of Theoretical Biology, 2014, 355, 236-238.	1.7	3
66	Viewing distance affects how the presence of inedible models influence the benefit of masquerade. Evolutionary Ecology, 2014, 28, 441-455.	1.2	8
67	Why are so many trees hollow?. Biology Letters, 2014, 10, 20140555.	2.3	13
68	Avian-style respiration allowed gigantism in pterosaurs. Journal of Experimental Biology, 2014, 217, 2627-8.	1.7	2
69	Empirically exploring why latex might be white: a comment on Lev-Yadun 2014. Chemoecology, 2014, 24, 219-220.	1.1	6
70	Why fruit rots: theoretical support for Janzen's theory of microbe–macrobe competition. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133320.	2.6	32
71	Incubation time as an important influence on egg production and distribution into clutches for sauropod dinosaurs. Paleobiology, 2014, 40, 323-330.	2.0	11
72	Frequency-dependent conspecific attraction to food patches. Biology Letters, 2014, 10, 20140522.	2.3	8

#	Article	IF	CITATIONS
73	Why is eusociality an almost exclusively terrestrial phenomenon?. Journal of Animal Ecology, 2014, 83, 1248-1255.	2.8	10
74	Collected and self-secreted building materials and their contributions to compression and tension structures. Biological Journal of the Linnean Society, 2014, 112, 625-639.	1.6	6
75	Linking signal fidelity and the efficiency costs of communication. Journal of Evolutionary Biology, 2014, 27, 1797-1810.	1.7	3
76	Do animal eyespots really mimic eyes?. Environmental Epigenetics, 2014, 60, 26-36.	1.8	42
77	Improving the reporting of <i> <scp>P</scp> </i> â€values generated by randomization methods. Methods in Ecology and Evolution, 2013, 4, 1033-1036.	5.2	42
78	Game theory, multi-modal signalling and the evolution of communication. Behavioral Ecology and Sociobiology, 2013, 67, 1417-1423.	1.4	7
79	Egg-Laying Substrate Selection for Optimal Camouflage by Quail. Current Biology, 2013, 23, 260-264.	3.9	108
80	On the evolutionary stability of zero-cost pooled-equilibrium signals. Journal of Theoretical Biology, 2013, 323, 69-75.	1.7	1
81	High C/N ratio (not lowâ€energy content) of vegetation may have driven gigantism in sauropod dinosaurs and perhaps omnivory and/or endothermy in their juveniles. Functional Ecology, 2013, 27, 131-135.	3.6	12
82	Review of alternative approaches to calculation of a confidence interval for the odds ratio of a 2Â×Â2 contingency table. Methods in Ecology and Evolution, 2013, 4, 9-13.	5.2	64
83	Exploring the dichotomy between animals building using self-secreted materials and using materials collected from the environment. Biological Journal of the Linnean Society, 2013, 108, 688-701.	1.6	9
84	Signal verification can promote reliable signalling. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131560.	2.6	11
85	Accidental Island Voyagers. Science, 2013, 339, 392-392.	12.6	0
86	Bitter taste enhances predatory biases against aggregations of prey with warning coloration. Behavioral Ecology, 2013, 24, 942-948.	2.2	20
87	Size-dependent microhabitat selection by masquerading prey. Behavioral Ecology, 2013, 24, 89-97.	2.2	33
88	ENDURANCE RUNNING AND ITS RELEVANCE TO SCAVENGING BY EARLY HOMININS. Evolution; International Journal of Organic Evolution, 2013, 67, 861-867.	2.3	19
89	The conservation physiology of seed dispersal. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1708-1718.	4.0	52
90	Comment on "Vegetation height and egg coloration differentially affect predation rate and overheating risk: an experimental test mimicking a ground-nesting bird― ¹ Appears in Can. J. Zool. 90 (6): 694–703. doi: 10.1139/z2012-035 Canadian Journal of Zoology, 2012, 90, 1359-1360.	1.0	5

#	Article	IF	CITATIONS
91	Why are defensive toxins so variable? An evolutionary perspective. Biological Reviews, 2012, 87, 874-884.	10.4	81
92	Group Dynamics: Predators and Prey Get a Little Help from Their Friends. Current Biology, 2012, 22, R531-R533.	3.9	2
93	Byâ€product information can stabilize the reliability of communication. Journal of Evolutionary Biology, 2012, 25, 2412-2421.	1.7	10
94	Population trajectories for accidental versus planned colonisation of islands. Journal of Human Evolution, 2012, 63, 507-511.	2.6	16
95	Masquerade is associated with polyphagy and larval overwintering in Lepidoptera. Biological Journal of the Linnean Society, 2012, 106, 90-103.	1.6	10
96	Vigilance Decreases with Time at Loafing Sites in Gulls (<i><scp>L</scp>arus</i> spp.). Ethology, 2012, 118, 733-739.	1.1	10
97	Resolving current disagreements and ambiguities in the terminology of animal communication. Journal of Evolutionary Biology, 2011, 24, 2574-2585.	1.7	60
98	Fishing with a Bait or Lure: A Brief Review of the Cognitive Issues. Ethology, 2011, 117, 1-9.	1.1	33
99	Alternative explanations for apparent mimicry. Journal of Ecology, 2011, 99, 899-904.	4.0	17
100	SOME MISTAKES GO UNPUNISHED: THE EVOLUTION OF "ALL OR NOTHING―SIGNALLING. Evolution; International Journal of Organic Evolution, 2011, 65, 2743-2749.	2.3	11
101	Context-dependent misclassification of masquerading prey. Evolutionary Ecology, 2011, 25, 751-761.	1.2	21
102	Motion dazzle and camouflage as distinct anti-predator defenses. BMC Biology, 2011, 9, 81.	3.8	97
103	The energetics of low browsing in sauropods. Biology Letters, 2011, 7, 779-781.	2.3	22
104	Unified effects of aggregation reveal larger prey groups take longer to find. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2985-2990.	2.6	61
105	Prey jitters; protean behaviour in grouped prey. Behavioral Ecology, 2011, 22, 831-836.	2.2	65
106	Mimicking multiple models: polyphenetic masqueraders gain additional benefits from crypsis. Behavioral Ecology, 2011, 22, 60-65.	2.2	28
107	Avoidance of overheating and selection for both hair loss and bipedality in hominins. Proceedings of the United States of America, 2011, 108, 20965-20969.	7.1	70
108	Sampling animal association networks with the gambit of the group. Behavioral Ecology and Sociobiology, 2010, 64, 493-503.	1.4	176

#	Article	IF	CITATIONS
109	Good practice in testing for an association in contingency tables. Behavioral Ecology and Sociobiology, 2010, 64, 1505-1513.	1.4	34
110	OPTIMAL DEFENSIVE COLORATION STRATEGIES DURING THE GROWTH PERIOD OF PREY. Evolution; International Journal of Organic Evolution, 2010, 64, 53-67.	2.3	26
111	When should we use oneâ€ŧailed hypothesis testing?. Methods in Ecology and Evolution, 2010, 1, 114-117.	5.2	196
112	Warning displays may function as honest signals of toxicity. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 871-877.	2.6	112
113	Why are pitfall traps so rare in the natural world?. Evolutionary Ecology, 2009, 23, 181-186.	1.2	33
114	Identifying the ecological conditions that select for intermediate levels of aposematic signalling. Evolutionary Ecology, 2009, 23, 491-501.	1.2	28
115	Basic features, conjunctive searches, and the confusion effect in predator–prey interactions. Behavioral Ecology and Sociobiology, 2009, 63, 473-475.	1.4	13
116	Distribution-free two-sample comparisons in the case of heterogeneous variances. Behavioral Ecology and Sociobiology, 2009, 63, 617-623.	1.4	29
117	A foundation for developing a methodology for social network sampling. Behavioral Ecology and Sociobiology, 2009, 63, 1079-1088.	1.4	18
118	Round your numbers in rank tests: exact and asymptotic inference and ties. Behavioral Ecology and Sociobiology, 2009, 64, 297-303.	1.4	8
119	Dynamic models allowing for flexibility in complex life histories accurately predict timing of metamorphosis and antipredator strategies of prey. Functional Ecology, 2009, 23, 1103-1113.	3.6	12
120	The timing of foodâ€deceptive flowers: a commentary on Internicola <i>etÂal.</i> (2008). Journal of Evolutionary Biology, 2009, 22, 1133-1136.	1.7	5
121	Deception in plants: mimicry or perceptual exploitation?. Trends in Ecology and Evolution, 2009, 24, 676-685.	8.7	174
122	Non-visual crypsis: a review of the empirical evidence for camouflage to senses other than vision. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 549-557.	4.0	98
123	The application of genetic algorithms in behavioural ecology, illustrated with a model of anti-predator vigilance. Journal of Theoretical Biology, 2008, 250, 435-448.	1.7	41
124	EVOLUTIONARY IMPLICATIONS OF THE FORM OF PREDATOR GENERALIZATION FOR APOSEMATIC SIGNALS AND MIMICRY IN PREY. Evolution; International Journal of Organic Evolution, 2008, 62, 2913-2921.	2.3	46
125	Can ecological and evolutionary arguments solve the riddle of the missing marine insects?. Marine Ecology, 2008, 29, 72-75.	1.1	14
126	The effect of social facilitation on foraging success in vultures: a modelling study. Biology Letters, 2008, 4, 311-313.	2.3	119

#	Article	IF	CITATIONS
127	Time for some a priori thinking about post hoc testing. Behavioral Ecology, 2008, 19, 690-693.	2.2	400
128	Dazzle coloration and prey movement. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2639-2643.	2.6	115
129	HOW BRIGHT AND HOW NASTY: EXPLAINING DIVERSITY IN WARNING SIGNAL STRENGTH. Evolution; International Journal of Organic Evolution, 2007, 61, 623-635.	2.3	84
130	THE IMPORTANCE OF INITIAL PROTECTION OF CONSPICUOUS MUTANTS FOR THE COEVOLUTION OF DEFENSE AND APOSEMATIC SIGNALING OF THE DEFENSE: A MODELING STUDY. Evolution; International Journal of Organic Evolution, 2007, 61, 2165-2174.	2.3	10
131	Countershading enhances cryptic protection: an experiment with wild birds and artificial prey. Animal Behaviour, 2007, 74, 1249-1258.	1.9	61
132	The unequal variance t-test is an underused alternative to Student's t-test and the Mann–Whitney U test. Behavioral Ecology, 2006, 17, 688-690.	2.2	1,296
133	Are green turtles globally endangered?. Global Ecology and Biogeography, 2006, 15, 21-26.	5.8	106
134	Adhesion and allometry from metamorphosis to maturation in hylid tree frogs: a sticky problem. Journal of Zoology, 2006, 270, 372-383.	1.7	25
135	Peppers and poisons: the evolutionary ecology of bad taste. Journal of Animal Ecology, 2006, 75, 1224-1226.	2.8	10
136	Using daily ration models and stable isotope analysis to predict biomass depletion by herbivores. Journal of Applied Ecology, 2006, 43, 1022-1030.	4.0	29
137	How can automimicry persist when predators can preferentially consume undefended mimics?. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 373-378.	2.6	24
138	Aggregation, defence and warning signals: the evolutionary relationship. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2417-2424.	2.6	53
139	Testing the assumptions of the ideal despotic distribution with an unpredictable food supply: experiments in juvenile salmon. Journal of Animal Ecology, 2005, 74, 214-225.	2.8	31
140	Seston capture by Hydropsyche siltalai and the accuracy of capture efficiency estimates. Freshwater Biology, 2005, 50, 113-126.	2.4	17
141	Evolutionarily stable investment in secondary defences. Functional Ecology, 2005, 19, 836-843.	3.6	23
142	WARNING DISPLAYS IN SPINY ANIMALS: ONE (MORE) EVOLUTIONARY ROUTE TO APOSEMATISM. Evolution; International Journal of Organic Evolution, 2005, 59, 2499-2508.	2.3	72
143	The influence of differential swimming speeds on composition of multi-species fish shoals. Journal of Fish Biology, 2005, 67, 866-872.	1.6	34
144	Intimidating butterflies. Trends in Ecology and Evolution, 2005, 20, 276-278.	8.7	13

#	Article	IF	CITATIONS
145	Increasing search rate over time may cause a slower than expected increase in prey encounter rate with increasing prey density. Biology Letters, 2005, 1, 133-135.	2.3	19
146	Evasive mimicry: when (if ever) could mimicry based on difficulty of capture evolve?. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2135-2142.	2.6	37
147	Resolving the departures of observed results from the Ideal Free Distribution with simple random movements. Journal of Animal Ecology, 2004, 73, 612-622.	2.8	21
148	Obligate vertebrate scavengers must be large soaring fliers. Journal of Theoretical Biology, 2004, 228, 431-436.	1.7	203
149	Using Artificial Nests to Test Importance of Nesting Material and Nest Shelter for Incubation Energetics. Auk, 2004, 121, 777-787.	1.4	5
150	Fish don't read textbooks: juvenile salmon prove ignorant of foraging theory. Journal of Fish Biology, 2003, 63, 236-237.	1.6	1
151	Could Tyrannosaurus rex have been a scavenger rather than a predator? An energetics approach. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 731-733.	2.6	24
152	Estimation of intergenerational drift dispersal distances and mortality risk for aquatic macroinvertebrates. Limnology and Oceanography, 2003, 48, 2117-2124.	3.1	16
153	Intraspecific brood parasitism can increase the number of eggs that an individual lays in its own nest. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1989-1992.	2.6	24
154	Is there really a drift paradox?. Journal of Animal Ecology, 2002, 71, 151-154.	2.8	43
155	Nest scrape design and clutch heat loss in Pectoral Sandpipers (Calidris melanotos). Functional Ecology, 2002, 16, 305-312.	3.6	64
156	The possible fitness benefits of striped coat coloration for zebra. Mammal Review, 2002, 32, 237-244.	4.8	51
157	Bells reduce predation of wildlife by domestic cats (<i>Felis catus</i>). Journal of Zoology, 2002, 256, 81-83.	1.7	85
158	ENERGETIC CONSEQUENCES OF CLUTCH TEMPERATURE AND CLUTCH SIZE FOR A UNIPARENTAL INTERMITTENT INCUBATOR: THE STARLING. Auk, 2002, 119, 54.	1.4	24
159	Energetic Consequences of Clutch Temperature and Clutch Size for a Uniparental Intermittent Incubator: The Starling. Auk, 2002, 119, 54-61.	1.4	2
160	The stability of internal equilibria in predator-prey models with breeding suppression. Ima Journal of Mathemathics Applied in Medicine and Biology, 2002, 19, 207-19.	0.0	0
161	Wasps enter and leave their nest at regular intervals. Insectes Sociaux, 2001, 48, 363-365.	1.2	4
162	A model of dominance and resource division among a group of animals of differing quality. Population Ecology, 2001, 43, 213-220.	1.2	5

#	Article	IF	CITATIONS
163	The formation and growth of seabird colonies: Audouin's gull as a case study. Journal of Animal Ecology, 2001, 70, 527-535.	2.8	91
164	Unequal competitor ideal free distributions: predictions for differential effects of interference between habitats. Journal of Animal Ecology, 2001, 70, 1062-1069.	2.8	11
165	Nonâ€competitive phenotypic differences can have a strong effect on ideal free distributions. Journal of Animal Ecology, 2001, 70, 25-32.	2.8	1
166	Are Unusually Colored Eggs a Signal to Potential Conspecific Brood Parasites?. American Naturalist, 2001, 157, 451-458.	2.1	12
167	Dynamics of mercury in blood and feathers of great skuas. Environmental Toxicology and Chemistry, 2000, 19, 1638-1643.	4.3	139
168	The consequences of clutch size for incubation conditions and hatching success in starlings. Functional Ecology, 2000, 14, 560-565.	3.6	89
169	Refuge use in sticklebacks as a function of body length and group size. Journal of Fish Biology, 2000, 56, 1023-1027.	1.6	10
170	Group size and relative competitive ability: geometric progressions as a conceptual tool. Behavioral Ecology and Sociobiology, 2000, 47, 113-118.	1.4	4
171	BREEDING SUPPRESSION AND PREDATOR–PREY DYNAMICS. Ecology, 2000, 81, 252-260.	3.2	23
172	Evidence for a rule governing the avoidance of superfluous escape flights. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 733-737.	2.6	99
173	Fish shoal composition: mechanisms and constraints. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2011-2017.	2.6	106
174	Testing Müllerian mimicry: an experiment with wild birds. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 725-731.	2.6	79
175	The consequences of clutch size for incubation conditions and hatching success in starlings. Functional Ecology, 2000, 14, 560-565.	3.6	2
176	DYNAMICS OF MERCURY IN BLOOD AND FEATHERS OF GREAT SKUAS. Environmental Toxicology and Chemistry, 2000, 19, 1638.	4.3	3
177	Dispersal and stability in metapopulations. Mathematical Medicine and Biology, 1999, 16, 297-306.	1.2	12
178	Distribution of Crassiphiala bulboglossa , a parasitic worm, in shoaling fish. Journal of Animal Ecology, 1999, 68, 27-33.	2.8	20
179	Fitnessâ€dependent dispersal in metapopulations and its consequences for persistence and synchrony. Journal of Animal Ecology, 1999, 68, 530-539.	2.8	70
180	Are attentive mothers preferentially parasitised?. Behavioral Ecology and Sociobiology, 1999, 46, 71-72.	1.4	4

#	Article	IF	CITATIONS
181	Refuge use by fish as a function of body weight changes. Acta Ethologica, 1999, 2, 29-34.	0.9	19
182	Sheep in wolves' clothing. Nature, 1998, 394, 833-834.	27.8	9
183	Evolutionarily stable stealing: game theory applied to kleptoparasitism Annals of Human Genetics, 1998, 62, 453-464.	0.8	3
184	Is there always an influence of shoal size on predator hunting success?. Journal of Fish Biology, 1998, 52, 494-501.	1.6	78
185	Dinosaurs for everyone. Trends in Ecology and Evolution, 1998, 13, 466.	8.7	0
186	Refuge use by fish as a function of body length–related metabolic expenditure and predation risks. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 2373-2379.	2.6	192
187	Is there always an influence of shoal size on predator hunting success?. Journal of Fish Biology, 1998, 52, 494-501.	1.6	5
188	EVOLUTION OF DISPERSAL RATES IN METAPOPULATION MODELS: BRANCHING AND CYCLIC DYNAMICS IN PHENOTYPE SPACE. Evolution; International Journal of Organic Evolution, 1997, 51, 1730-1741.	2.3	116
189	Predator–induced breeding suppression and its consequences for predator–prey population dynamics. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 409-415.	2.6	53
190	Controlling spatial chaos in metapopulations with long-range dispersal. Bulletin of Mathematical Biology, 1997, 59, 497-515.	1.9	4
191	Controlling spatial chaos in metapopulations with long-range dispersal. Bulletin of Mathematical Biology, 1997, 59, 497-515.	1.9	14
192	Chaotic dynamics may determine the effect of inter-patch migration on metapopulation survival. Journal of Biosciences, 1996, 21, 93-100.	1.1	1
193	Density-dependent migration and stability in a system of linked populations. Bulletin of Mathematical Biology, 1996, 58, 643-660.	1.9	62
194	Density-dependent migration and stability in a system of linked populations. Bulletin of Mathematical Biology, 1996, 58, 643-660.	1.9	21
195	The evolution and ecology of masquerade. Biological Journal of the Linnean Society, 0, 99, 1-8.	1.6	115
196	Unequal sample sizes according to the squareâ€root allocation rule are useful when comparing several treatments with a control. Ethology, 0, , .	1.1	1
197	Local Weather Conditions Affect Forager Size and Visitation Rate on Bramble Flowers (Rubus) Tj ETQq1 1 0.784	314 rgBT / 0.7	Overlock 10