John C Linehan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1889132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Designing Catalytic Systems Using Binary Solvent Mixtures: Impact of Mole Fraction of Water on Hydride Transfer. Inorganic Chemistry, 2021, 60, 17132-17140.	4.0	2
2	Cobalt-Group 13 Complexes Catalyze CO ₂ Hydrogenation via a Co(â^'l)/Co(l) Redox Cycle. ACS Catalysis, 2020, 10, 2459-2470.	11.2	55
3	High-pressure apparatus for monitoring solid–liquid phase transitions. Review of Scientific Instruments, 2020, 91, 094102.	1.3	1
4	Methodology for the Development of Empirical Models Relating ¹³ C NMR Spectral Features to Fuel Properties. Energy & Fuels, 2020, 34, 12556-12572.	5.1	2
5	Enhanced Hydrogenation of Carbon Dioxide to Methanol by a Ruthenium Complex with a Charged Outer-Coordination Sphere. ACS Catalysis, 2020, 10, 7419-7423.	11.2	25
6	Evaluating the impacts of amino acids in the second and outer coordination spheres of Rh-bis(diphosphine) complexes for CO2 hydrogenation. Faraday Discussions, 2019, 215, 123-140.	3.2	11
7	Octane-On-Demand: Onboard Separation of Oxygenates from Gasoline. Energy & Fuels, 2019, 33, 1869-1881.	5.1	7
8	Thermodynamic and kinetic studies of H ₂ and N ₂ binding to bimetallic nickel-group 13 complexes and neutron structure of a Ni(η ² -H ₂) adduct. Chemical Science, 2019, 10, 7029-7042.	7.4	38
9	Operando XAFS Studies on Rh(CAAC)-Catalyzed Arene Hydrogenation. ACS Catalysis, 2019, 9, 4106-4114.	11.2	46
10	Protein Scaffold Activates Catalytic CO ₂ Hydrogenation by a Rhodium Bis(diphosphine) Complex. ACS Catalysis, 2019, 9, 620-625.	11.2	30
11	Autoignition and select properties of low sample volume thermochemical mixtures from renewable sources. Fuel, 2019, 238, 493-506.	6.4	6
12	Frontispiece: Making a Splash in Homogeneous CO ₂ Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms. Chemistry - A European Journal, 2018, 24, .	3.3	0
13	Rh(CAAC)-Catalyzed Arene Hydrogenation: Evidence for Nanocatalysis and Sterically Controlled Site-Selective Hydrogenation. ACS Catalysis, 2018, 8, 8441-8449.	11.2	94
14	Making a Splash in Homogeneous CO ₂ Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms. Chemistry - A European Journal, 2018, 24, 16964-16971.	3.3	25
15	Hydrogenation of CO ₂ in Water Using a Bis(diphosphine) Ni–H Complex. ACS Catalysis, 2017, 7, 3089-3096.	11.2	66
16	Changing the Mechanism for CO ₂ Hydrogenation Using Solventâ€Dependent Thermodynamics. Angewandte Chemie - International Edition, 2017, 56, 15002-15005.	13.8	42
17	Detection of an Iridium–Dihydrogen Complex: A Proposed Intermediate in Ionic Hydrogenation. Journal of the American Chemical Society, 2017, 139, 12638-12646.	13.7	21
18	A Bimetallic Nickel–Gallium Complex Catalyzes CO ₂ Hydrogenation via the Intermediacy of an Anionic d ¹⁰ Nickel Hydride. Journal of the American Chemical Society, 2017, 139, 14244-14250.	13.7	128

JOHN C LINEHAN

#	Article	IF	CITATIONS
19	Changing the Mechanism for CO 2 Hydrogenation Using Solventâ€Dependent Thermodynamics. Angewandte Chemie, 2017, 129, 15198-15201.	2.0	3
20	Hydrogenation of CO ₂ at Room Temperature and Low Pressure with a Cobalt Tetraphosphine Catalyst. Inorganic Chemistry, 2017, 56, 8580-8589.	4.0	39
21	Understanding the Relationship Between Kinetics and Thermodynamics in CO ₂ Hydrogenation Catalysis. ACS Catalysis, 2017, 7, 6008-6017.	11.2	43
22	Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel. Dalton Transactions, 2016, 45, 10017-10023.	3.3	24
23	Triphosphine-Ligated Copper Hydrides for CO ₂ Hydrogenation: Structure, Reactivity, and Thermodynamic Studies. Journal of the American Chemical Society, 2016, 138, 9968-9977.	13.7	109
24	Determination of the Dominant Catalyst Derived from the Classic [RhCp*Cl ₂] ₂ Precatalyst System: Is it Single-Metal Rh ₁ Cp*-Based, Subnanometer Rh ₄ Cluster-Based, or Rh(0) <i>_n</i> Nanoparticle-Based Cyclohexene Hydrogenation Catalysis at Room Temperature and Mild Pressures?. ACS Catalysis, 2015, 5,	11.2	28
25	3876-3886. A Molecular Copper Catalyst for Hydrogenation of CO ₂ to Formate. ACS Catalysis, 2015, 5, 5301-5305.	11.2	140
26	The Influence of the Second and Outer Coordination Spheres on Rh(diphosphine) ₂ CO ₂ Hydrogenation Catalysts. ACS Catalysis, 2014, 4, 3663-3670.	11.2	37
27	A Cobalt Hydride Catalyst for the Hydrogenation of CO ₂ : Pathways for Catalysis and Deactivation. ACS Catalysis, 2014, 4, 3755-3762.	11.2	102
28	Homogeneous Hydrogenation of CO ₂ to Methyl Formate Utilizing Switchable Ionic Liquids. Inorganic Chemistry, 2014, 53, 9849-9854.	4.0	50
29	Beyond the Active Site: The Impact of the Outer Coordination Sphere on Electrocatalysts for Hydrogen Production and Oxidation. Accounts of Chemical Research, 2014, 47, 2621-2630.	15.6	152
30	A Cobalt-Based Catalyst for the Hydrogenation of CO ₂ under Ambient Conditions. Journal of the American Chemical Society, 2013, 135, 11533-11536.	13.7	343
31	ls It Homogeneous or Heterogeneous Catalysis Derived from [RhCp*Cl ₂] ₂ ? <i>In Operando</i> XAFS, Kinetic, and Crucial Kinetic Poisoning Evidence for Subnanometer Rh ₄ Cluster-Based Benzene Hydrogenation Catalysis. Journal of the American Chemical Society. 2011, 133, 18889-18902.	13.7	147
32	Hydride Transfer from Rhodium Complexes to Triethylborane. Organometallics, 2006, 25, 4414-4419.	2.3	59
33	The use of supercritical fluids as solvents for NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 2005, 47, 95-109.	7.5	47
34	Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium Trimethylphosphine Complexes:  The Accelerating Effect of Certain Alcohols and Amines. Journal of the American Chemical Society, 2002, 124, 7963-7971.	13.7	320
35	Investigation of the hydroformylation of ethylene in liquid carbon dioxide. Journal of Organometallic Chemistry, 2002, 650, 249-257.	1.8	43