Francisco Galisteo-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1888596/publications.pdf

Version: 2024-02-01

68 papers

1,664 citations

236925 25 h-index 330143 37 g-index

69 all docs 69 docs citations

69 times ranked 1841 citing authors

#	Article	lF	Citations
1	Preparation of highly stable oleogel-based nanoemulsions for encapsulation and controlled release of curcumin. Food Chemistry, 2022, 378, 132132.	8.2	27
2	Hyaluronic acid and human/bovine serum albumin shelled nanocapsules: Interaction with mucins and in vitro digestibility of interfacial films. Food Chemistry, 2022, 383, 132330.	8.2	7
3	Solid lipid nanoparticles to improve bioaccessibility and permeability of orally administered maslinic acid. Drug Delivery, 2022, 29, 1971-1982.	5.7	7
4	Applications of serum albumins in delivery systems: Differences in interfacial behaviour and interacting abilities with polysaccharides. Advances in Colloid and Interface Science, 2021, 290, 102365.	14.7	41
5	Investigating the role of hyaluronic acid in improving curcumin bioaccessibility from nanoemulsions. Food Chemistry, 2021, 351, 129301.	8.2	18
6	Maslinic Acid Nanoparticles: A Drug to Carry Others. Materials Proceedings, 2021, 4, 6.	0.2	0
7	Photoacoustic effect applied on model membranes and living cells: direct observation with multiphoton excitation microscopy and long-term viability analysis. Scientific Reports, 2020, 10, 299.	3.3	9
8	Maslinic acid conjugate with 7-amino-4-methylcoumarin as probe to monitor the temperature dependent conformational changes of human serum albumin by FRET. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 161-169.	3.9	6
9	Mucoadhesive properties of liquid lipid nanocapsules enhanced by hyaluronic acid. Journal of Molecular Liquids, 2019, 296, 111965.	4.9	19
10	A spectroscopic analysis of the interaction between MEGA10 and Concanavalin A. Journal of Molecular Liquids, 2019, 275, 674-681.	4.9	0
11	Albumin-covered lipid nanocapsules exhibit enhanced uptake performance by breast-tumor cells. Colloids and Surfaces B: Biointerfaces, 2018, 165, 103-110.	5.0	21
12	Synthesis and in vitro antiproliferative evaluation of PEGylated triterpene acids. Fìtoterapìâ, 2017, 120, 25-40.	2.2	22
13	Effect of cross-linker glutaraldehyde on gastric digestion of emulsified albumin. Colloids and Surfaces B: Biointerfaces, 2016, 145, 899-905.	5.0	14
14	Simultaneous presence of dynamic and sphere action component in the fluorescence quenching of human serum albumin by diphthaloylmaslinic acid. Journal of Luminescence, 2016, 178, 259-266.	3.1	24
15	Interaction between the anti-cancer drug diacetyl maslinic acid and bovine serum albumin: A biophysical study. Journal of Molecular Liquids, 2015, 208, 304-313.	4.9	37
16	Energetics of albumin-disuccinylmaslinic acid binding determined by fluorescence spectroscopy. Fluid Phase Equilibria, 2015, 400, 43-52.	2.5	6
17	Olive-oil nanocapsules stabilized by HSA: influence of processing variables on particle properties. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	9
18	Systematic study on the preparation of BSA nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 123, 286-292.	5.0	109

#	Article	IF	CITATIONS
19	Spectroscopic investigation on the interaction of maslinic acid with bovine serum albumin. Journal of Luminescence, 2014, 156, 141-149.	3.1	45
20	Evidence of hydration forces between proteins. Current Opinion in Colloid and Interface Science, 2011, 16, 572-578.	7.4	50
21	Adhesion Forces between Protein Layers Studied by Means of Atomic Force Microscopy. Langmuir, 2006, 22, 5108-5114.	3.5	17
22	Hydration forces between silica surfaces: Experimental data and predictions from different theories. Journal of Chemical Physics, 2005, 123, 034708.	3.0	127
23	Existence of Hydration Forces in the Interaction between Apoferritin Molecules Adsorbed on Silica Surfaces. Langmuir, 2005, 21, 9544-9554.	3.5	38
24	Measurement of interactions between protein layers adsorbed on silica by atomic force microscopy. Journal of Physics Condensed Matter, 2004, 16, S2383-S2392.	1.8	7
25	Amino, chloromethyl and acetal-functionalized latex particles for immunoassays: a comparative study. Journal of Immunological Methods, 2004, 287, 159-167.	1.4	17
26	Interaction Forces between BSA Layers Adsorbed on Silica Surfaces Measured with an Atomic Force Microscope. Journal of Physical Chemistry B, 2004, 108, 5365-5371.	2.6	43
27	Interactions between bovine serum albumin layers adsorbed on different substrates measured with an atomic force microscope. Physical Chemistry Chemical Physics, 2004, 6, 1482-1486.	2.8	23
28	Study of the colloidal stability of an amphoteric latex. Colloid and Polymer Science, 2003, 281, 708-715.	2.1	14
29	Primitive models and electrophoresis: an experimental study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 222, 155-164.	4.7	22
30	Amino-functionalized latex particles obtained by a multistep method: Development of a new immunoreagent. Journal of Polymer Science Part A, 2003, 41, 2404-2411.	2.3	35
31	Probing charge inversion in model colloids: electrolyte mixtures of multi- and monovalent counterions. Journal of Physics Condensed Matter, 2003, 15, S3475-S3483.	1.8	34
32	Looking into overcharging in model colloids through electrophoresis: Asymmetric electrolytes. Journal of Chemical Physics, 2003, 118, 4183-4189.	3.0	57
33	Latex Immunoagglutination Assays. Surfactant Science, 2003, , .	0.0	О
34	Electrophoretic mobility of model colloids and overcharging: theory and experiment. Molecular Physics, 2002, 100, 3029-3039.	1.7	27
35	Electrophoretic Mobility and Primitive Models:Â Surface Charge Density Effect. Journal of Physical Chemistry B, 2002, 106, 6881-6886.	2.6	34
36	Interaction of Bacterial Endotoxine (Lipopolysaccharide) with Latex Particles: Application to Latex Agglutination Immunoassays. Journal of Colloid and Interface Science, 2002, 245, 230-236.	9.4	32

#	Article	IF	Citations
37	Fractal Aggregates Induced by Antigenâ 'Antibody Interaction. Langmuir, 2001, 17, 2514-2520.	3.5	13
38	Specific cation adsorption on protein-covered particles and its influence on colloidal stability. Colloids and Surfaces B: Biointerfaces, 2001, 21, 125-135.	5.0	30
39	Synthesis of amino-functionalized latex particles by a multistep method. Journal of Polymer Science Part A, 2001, 39, 2929-2936.	2.3	27
40	Development and validation of an automated and ultrasensitive immunoturbidimetric assay for C-reactive protein. Clinical Chemistry, 2000, 46, 1839-42.	3.2	5
41	Colloidal aggregation in energy minima of restricted depth. Journal of Chemical Physics, 1999, 110, 5412-5420.	3.0	30
42	The role played by hydration forces in the stability of protein-coated particles: non-classical DLVO behaviour. Colloids and Surfaces B: Biointerfaces, 1999, 14, 3-17.	5.0	55
43	Development of a high sensitivity IgG-latex immunodetection system stabilized by hydration forces. Polymer International, 1999, 48, 685-690.	3.1	6
44	Forces acting on particle-enhanced immunoassays. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 1093-1105.	3.5	5
45	Particle enhanced immunoassays stabilized by hydration forces: a comparative study between IgG and F(ab′)2 immunoreactivity. Journal of Immunological Methods, 1998, 211, 87-95.	1.4	17
46	Anomalous Colloidal Stability of Latex-Protein Systems. Journal of Colloid and Interface Science, 1998, 206, 518-526.	9.4	18
47	Cluster Morphology of Protein-Coated Polymer Colloids. Journal of Colloid and Interface Science, 1998, 208, 445-454.	9.4	13
48	Agglutination kinetics of F(abâ \in 2) 2 coated polymer colloids. Colloid and Polymer Science, 1998, 276, 1117-1124.	2.1	10
49	Latex immunoassays: Comparative studies on covalent and physical immobilization of antibodies. II. IgG. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 1103-1113.	3.5	10
50	Latex immunoassays: Comparative studies on covalent and physical immobilization of antibodies. I. F(ab')2 fragments. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 1089-1101.	3.5	11
51	Functionalized Monodisperse Particles with Chloromethyl Groups for the Covalent Coupling of Proteins. Macromolecules, 1998, 31, 4282-4287.	4.8	30
52	Colloidal stability of protein-polymer systems: A possible explanation by hydration forces. Physical Review E, 1997, 55, 4522-4530.	2.1	68
53	Repeptization Determined by Turbidity and Photon Correlation Spectroscopy Measurements: Particle Size Effects. Journal of Colloid and Interface Science, 1997, 195, 289-298.	9.4	13
54	Stabilization of protein-latex complexes at high ionic strength. Colloids and Surfaces B: Biointerfaces, 1996, 8, 73-80.	5.0	18

#	Article	IF	CITATIONS
55	Protein Adsorption at the Agl-Water Interface. Journal of Colloid and Interface Science, 1995, 172, 502-509.	9.4	28
56	Adsorption of lysozyme and $\hat{1}$ -lactalbumin on poly(styrenesulphonate) latices 2. Proton titrations. Colloids and Surfaces B: Biointerfaces, 1995, 4, 389-400.	5.0	24
57	Protein adsorption on polystyrene latex particles. Polymers for Advanced Technologies, 1995, 6, 518-525.	3.2	31
58	Adsorption of lysozyme and \hat{l}_{\pm} -lactalbumin on poly(styrenesulphonate) latices 1. Adsorption and desorption behaviour. Colloids and Surfaces B: Biointerfaces, 1995, 4, 375-387.	5.0	35
59	Adsorption of monoclonal IgG on polystyrene microspheres. Colloid and Polymer Science, 1994, 272, 352-358.	2.1	22
60	Influence of electrostatic forces on IgG adsorption onto polystyrene beads. Colloids and Surfaces B: Biointerfaces, 1994, 2, 435-441.	5.0	23
61	On the structure of electrical double layer of IgG immobilized on polystyrene microspheres. Journal of Biomaterials Science, Polymer Edition, 1993, 4, 631-641.	3.5	8
62	On the structure of electrical double layer of IgG immobilized on polystyrene microspheres. Journal of Biomaterials Science, Polymer Edition, 1993, 4, 631-641.	3.5	0
63	ON SOME ASPECTS OF THE ADSORPTION OF IMMUNOGLOBULIN-G MOLECULES ON POLYSTYRENE MICROSPHERES. Journal of Dispersion Science and Technology, 1992, 13, 399-416.	2.4	18
64	On the adsorption of IgG onto polystyrene particles: electrophoretic mobility and critical coagulation concentration. Colloid and Polymer Science, 1992, 270, 574-583.	2.1	64
65	Electrophoretic mobility, primary electroviscous effect and colloid stability of highly charged polystyrene latexes., 1991,, 416-424.		13
66	Adsorption of anionic surfactants on positively charged polystyrene particles II. Colloid and Polymer Science, 1991, 269, 406-411.	2.1	18
67	Charge inversion of latex particles in the presence of electrolyte. , 0, , 114-118.		0
68	Stabilisation of an amphoteric latex by hydration forces. , 0, , 255-259.		0