Anders T Lindhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1888556/publications.pdf

Version: 2024-02-01

71061 95218 4,850 73 41 68 citations h-index g-index papers 115 115 115 3923 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Copper-catalyzed and additive free decarboxylative trifluoromethylation of aromatic and heteroaromatic iodides. Organic and Biomolecular Chemistry, 2020, 18, 1417-1425.	1.5	11
2	COtab: Expedient and Safe Setup for Pd-Catalyzed Carbonylation Chemistry. Organic Letters, 2019, 21, 5775-5778.	2.4	15
3	Nucleophilic fluorination facilitated by a CsF–CaF ₂ packed bed reactor in continuous flow. Chemical Communications, 2018, 54, 825-828.	2.2	9
4	Organocatalyzed Decarboxylative Trichloromethylation of Morita–Baylis–Hillman Adducts in Batch and Continuous Flow. Chemistry - A European Journal, 2018, 24, 1204-1208.	1.7	6
5	Studying the Morita-Baylis-Hillman Reaction in Continuous Flow Using Packed Bed Reactors. Organic Process Research and Development, 2018, 22, 1524-1533.	1.3	3
6	Recent developments in carbonylation chemistry using [¹³ C]CO, [¹¹ C]CO, and [¹⁴ C]CO. Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61, 949-987.	0.5	47
7	Improved Safety during Transfer of Pyrophoric tert-Butyllithium from Flasks with Protective Seals. Organic Process Research and Development, 2018, 22, 903-905.	1.3	7
8	A High Mobility Reactor Unit for R& D Continuous Flow Transfer Hydrogenations. Organic Process Research and Development, 2017, 21, 370-376.	1.3	21
9	<i>Ex situ</i> generation of stoichiometric HCN and its application in the Pd-catalysed cyanation of aryl bromides: evidence for a transmetallation step between two oxidative addition Pd-complexes. Chemical Science, 2017, 8, 8094-8105.	3.7	35
10	Dynamic Solid-State NMR Experiments Reveal Structural Changes for a Methyl Silicate Nanostructure on Deuterium Substitution. Journal of Physical Chemistry C, 2017, 121, 26507-26518.	1.5	1
11	Synthesis and selective ² Hâ€, ¹³ Câ€, and ¹⁵ Nâ€labeling of the Tau protei binder THKâ€523. Journal of Labelled Compounds and Radiopharmaceuticals, 2017, 60, 30-35.	in _{0.5}	16
12	A Palladium atalyzed Double Carbonylation Approach to Isatins from 2â€lodoanilines. European Journal of Organic Chemistry, 2016, 2016, 1881-1885.	1.2	22
13	Cooperative redox activation for carbon dioxide conversion. Nature Communications, 2016, 7, 13782.	5.8	49
14	Development of a Palladium-Catalyzed Carbonylative Coupling Strategy to 1,4-Diketones. ACS Catalysis, 2016, 6, 2982-2987.	5.5	34
15	Direct <i>trans</i> -Selective Ruthenium-Catalyzed Reduction of Alkynes in Two-Chamber Reactors and Continuous Flow. ACS Catalysis, 2016, 6, 4710-4714.	5 . 5	67
16	The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions. Accounts of Chemical Research, 2016, 49, 594-605.	7.6	404
17	Palladium-Catalyzed Carbonylative α-Arylation of <i>tert</i> -Butyl Cyanoacetate with (Hetero)aryl Bromides. Journal of Organic Chemistry, 2016, 81, 1358-1366.	1.7	25
18	Synthesis of Acyl Carbamates via Four Component Pd-Catalyzed Carbonylative Coupling of Aryl Halides, Potassium Cyanate, and Alcohols. Organic Letters, 2015, 17, 1248-1251.	2.4	23

#	Article	IF	CITATIONS
19	General Method for the Preparation of Active Esters by Palladium-Catalyzed Alkoxycarbonylation of Aryl Bromides. Journal of Organic Chemistry, 2015, 80, 1920-1928.	1.7	29
20	Access to 2-(Het)aryl and 2-Styryl Benzoxazoles via Palladium-Catalyzed Aminocarbonylation of Aryl and Vinyl Bromides. Organic Letters, 2015, 17, 2094-2097.	2.4	34
21	C-1 Building Blocks in Organic Synthesis. Science of Synthesis Workbench Edition. Zwei Bäde. Herausgegeben von Piet W. N. M. van Leeuwen Angewandte Chemie, 2015, 127, 6192-6193.	1.6	0
22	Decarboxylative Reissert type trifluoro- and trichloro-methylation of (iso)quinoline derivatives in batch and continuous flow. Chemical Communications, 2015, 51, 9651-9654.	2.2	19
23	Palladium-Catalyzed Carbonylative Couplings of Vinylogous Enolates: Application to Statin Structures. Journal of the American Chemical Society, 2015, 137, 14043-14046.	6.6	30
24	Pd-Catalyzed Carbonylative Synthesis of Other-Membered Heterocycles from Aryl Halides. Topics in Heterocyclic Chemistry, 2015, , 89-99.	0.2	0
25	Palladium-Catalyzed Carbonylation of Aryl Bromides with N-Substituted Cyanamides. Synlett, 2014, 25, 1241-1245.	1.0	14
26	Efficient Fluoride-Catalyzed Conversion of CO ₂ to CO at Room Temperature. Journal of the American Chemical Society, 2014, 136, 6142-6147.	6.6	130
27	Decarboxylative Trichloromethylation of Aromatic Aldehydes and Its Applications in Continuous Flow. Journal of Organic Chemistry, 2014, 79, 1174-1183.	1.7	23
28	A Palladiumâ€Catalyzed Carbonylative–Deacetylative Sequence to 1,3â€Keto Amides. Advanced Synthesis and Catalysis, 2014, 356, 3519-3524.	2.1	21
29	Palladiumâ€Catalyzed Carbonylative Coupling of (2â€Azaaryl)methyl Anion Equivalents with (Hetero)Aryl Bromides. Chemistry - A European Journal, 2014, 20, 15785-15789.	1.7	18
30	1,2,4―and 1,3,4â€⊙xadiazole Synthesis by Palladiumâ€Catalyzed Carbonylative Assembly of Aryl Bromides with Amidoximes or Hydrazides. Advanced Synthesis and Catalysis, 2014, 356, 3074-3082.	2.1	39
31	Palladium-Catalyzed Carbonylative Sonogashira Coupling of Aryl Bromides Using Near Stoichiometric Carbon Monoxide. Organic Letters, 2014, 16, 2216-2219.	2.4	65
32	Two-Chamber Hydrogen Generation and Application: Access to Pressurized Deuterium Gas. Journal of Organic Chemistry, 2014, 79, 5861-5868.	1.7	47
33	Pdâ€Catalyzed Carbonylative αâ€Arylation of Aryl Bromides: Scope and Mechanistic Studies. Chemistry - A European Journal, 2013, 19, 17926-17938.	1.7	50
34	Direct Route to 1,3â€Diketones by Palladiumâ€Catalyzed Carbonylative Coupling of Aryl Halides with Acetylacetone. Chemistry - A European Journal, 2013, 19, 17687-17691.	1.7	32
35	An Air-Tolerant Approach to the Carbonylative Suzuki–Miyaura Coupling: Applications in Isotope Labeling. Journal of Organic Chemistry, 2013, 78, 10310-10318.	1.7	57
36	Reductive Carbonylation of Aryl Halides Employing a Two-Chamber Reactor: A Protocol for the Synthesis of Aryl Aldehydes Including $\langle \sup 13 \rangle$ and D-Isotope Labeling. Journal of Organic Chemistry, 2013, 78, 6112-6120.	1.7	70

#	Article	IF	CITATIONS
37	Generation of Stoichiometric Ethylene and Isotopic Derivatives and Application in Transitionâ€Metalâ€Catalyzed Vinylation and Enyne Metathesis. Chemistry - A European Journal, 2013, 19, 17603-17607.	1.7	24
38	Control and femtosecond time-resolved imaging of torsion in a chiral molecule. Journal of Chemical Physics, 2012, 136, 204310.	1.2	83
39	Palladium-Catalyzed <i>N</i> -Acylation of Monosubstituted Ureas Using Near-Stoichiometric Carbon Monoxide. Journal of Organic Chemistry, 2012, 77, 3793-3799.	1.7	52
40	¹⁴ Carbon monoxide made simple â€" novel approach to the generation, utilization, and scrubbing of ¹⁴ carbon monoxide. Journal of Labelled Compounds and Radiopharmaceuticals, 2012, 55, 411-418.	0.5	64
41	Mild and Efficient Nickel-Catalyzed Heck Reactions with Electron-Rich Olefins. Journal of the American Chemical Society, 2012, 134, 443-452.	6.6	138
42	Palladium Catalyzed Carbonylative Heck Reaction Affording Monoprotected 1,3-Ketoaldehydes. Organic Letters, 2012, 14, 2536-2539.	2.4	61
43	Palladium-Catalyzed Double Carbonylation Using Near Stoichiometric Carbon Monoxide: Expedient Access to Substituted ^{13C₂-Labeled Phenethylamines. Journal of Organic Chemistry, 2012, 77, 6155-6165.}	1.7	74
44	An Efficient Method for the Preparation of Tertiary Esters by Palladium-Catalyzed Alkoxycarbonylation of Aryl Bromides. Organic Letters, 2012, 14, 284-287.	2.4	57
45	Palladiumâ€Catalyzed Carbonylative αâ€Arylation for Accessing 1,3â€Diketones. Angewandte Chemie - International Edition, 2012, 51, 798-801.	7.2	92
46	Palladium-Catalyzed Approach to Primary Amides Using Nongaseous Precursors. Organic Letters, 2011, 13, 4454-4457.	2.4	63
47	Carbonylative Heck Reactions Using CO Generated <i>ex Situ</i> in a Two-Chamber System. Organic Letters, 2011, 13, 2444-2447.	2.4	98
48	<i>Ex Situ</i> Generation of Stoichiometric and Substoichiometric ¹² CO and ¹³ CO and Its Efficient Incorporation in Palladium Catalyzed Aminocarbonylations. Journal of the American Chemical Society, 2011, 133, 6061-6071.	6.6	389
49	Silacarboxylic Acids as Efficient Carbon Monoxide Releasing Molecules: Synthesis and Application in Palladium-Catalyzed Carbonylation Reactions. Journal of the American Chemical Society, 2011, 133, 18114-18117.	6.6	254
50	Size control and catalytic activity of bio-supported palladium nanoparticles. Colloids and Surfaces B: Biointerfaces, 2011, 85, 373-378.	2.5	51
51	In Situ Generated Bulky Palladium Hydride Complexes as Catalysts for the Efficient Isomerization of Olefins. Selective Transformation of Terminal Alkenes to 2-Alkenes. Journal of the American Chemical Society, 2010, 132, 7998-8009.	6.6	196
52	2â€Pyridyl Tosylate Derivatives—Building Blocks for Structural Diversity via Transition Metal Catalysis. Israel Journal of Chemistry, 2010, 50, 558-567.	1.0	8
53	Environmentally Benign Recovery and Reactivation of Palladium from Industrial Waste by Using Gramâ€Negative Bacteria. ChemSusChem, 2010, 3, 1036-1039.	3.6	54
54	Pdâ€Catalyzed CN Bond Formation with Heteroaromatic Tosylates. Chemistry - A European Journal, 2010, 16, 5437-5442.	1.7	56

#	Article	IF	Citations
55	Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnology and Bioengineering, 2010, 107, 206-215.	1.7	78
56	Enamides Accessed from Aminothioesters via a Pd(0)-Catalyzed Decarbonylative/β-Hydride Elimination Sequence. Organic Letters, 2010, 12, 4716-4719.	2.4	34
57	Heteroaromatic Tosylates as Electrophiles in Regioselective Mizoroki–Heckâ€Coupling Reactions with Electronâ€Rich Olefins. Chemistry - A European Journal, 2009, 15, 5950-5955.	1.7	63
58	Highly Regioselective Au(I)-Catalyzed Hydroamination of Ynamides and Propiolic Acid Derivatives with Anilines. Organic Letters, 2009, 11, 4208-4211.	2.4	140
59	A Versatile Approach to \hat{l}^2 -Amyloid Fibril-Binding Compounds Exploiting the Shirakawa/Hayashi Protocol for <i>trans</i> -Alkene Synthesis. Organic Letters, 2009, 11, 999-1002.	2.4	17
60	Studies on the 1,2-Migrations in Pd-Catalyzed Negishi Couplings with JosiPhos Ligands. Journal of Organic Chemistry, 2009, 74, 135-143.	1.7	49
61	A Ligand Free and Room Temperature Protocol for Pd-Catalyzed Kumadaâ^'Corriu Couplings of Unactivated Alkenyl Phosphates. Journal of Organic Chemistry, 2009, 74, 3536-3539.	1.7	70
62	Heteroaromatic Sulfonates and Phosphates as Electrophiles in Iron-Catalyzed Cross-Couplings. Organic Letters, 2009, 11, 4886-4888.	2.4	96
63	Bio-supported palladium nanoparticles as a catalyst for Suzuki–Miyaura and Mizoroki–Heck reactions. Green Chemistry, 2009, 11, 2041.	4.6	82
64	Classical Reagents: New Surprises in Palladium-Catalyzed CC Coupling Reactions. Chemistry - A European Journal, 2008, 14, 8756-8766.	1.7	29
65	Palladiumâ€Catalyzed Intermolecular Ene–Yne Coupling: Development of an Atomâ€Efficient Mizoroki–Heckâ€Type Reaction. Angewandte Chemie - International Edition, 2008, 47, 2668-2672.	7.2	89
66	Direct Vinylation and Difluorovinylation of Arylboronic Acids Using Vinyl- and 2,2-Difluorovinyl Tosylates via the Suzukiâ^Miyaura Cross Coupling. Journal of Organic Chemistry, 2008, 73, 3404-3410.	1.7	120
67	An Expedient Synthesis of the Fibril Binding Compound FSB via Sequential Pd-Catalyzed Coupling Reactions. Journal of Organic Chemistry, 2008, 73, 3570-3573.	1.7	11
68	Studies on the Heck Reaction with Alkenyl Phosphates:Â Can the 1,2-Migration Be Controlled? Scope and Limitations. Journal of the American Chemical Society, 2007, 129, 6931-6942.	6.6	122
69	Investigations on the Suzukiâ^'Miyaura and Negishi Couplings with Alkenyl Phosphates:Â Application to the Synthesis of 1,1-Disubstituted Alkenes. Journal of Organic Chemistry, 2007, 72, 6464-6472.	1.7	90
70	Direct synthesis of 1,1-diarylalkenes from alkenyl phosphates via nickel(0)-catalysed Suzuki–Miyaura coupling. Chemical Communications, 2006, , 4137-4139.	2.2	57
71	Heck Coupling with Nonactivated Alkenyl Tosylates and Phosphates: Examples of Effective 1,2-Migrations of the Alkenyl Palladium(II) Intermediates. Angewandte Chemie - International Edition, 2006, 45, 3349-3353.	7.2	196
72	Regioselective Heck Couplings of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Tosylates and Mesylates with Electron-Rich Olefins. Organic Letters, 2005, 7, 5585-5587.	2.4	96

#	Article	IF	CITATIONS
73	Fast and Regioselective Heck Couplings with N-Acyl-N-vinylamine Derivatives. Journal of Organic Chemistry, 2005, 70, 5997-6003.	1.7	85