Mikhail S Nechaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1888553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solvent-free palladium-catalyzed C O cross-coupling of (hetero)aryl halides with primary alcohols. Mendeleev Communications, 2022, 32, 258-259.	1.6	1
2	DFT Investigation of the η6 ⇌ η6-Inter-ring Haptotropic Rearrangement of the Group 8 Metals Complexes [(graphene)MCp]+ (M = Fe, Ru, Os). Journal of Physical Chemistry A, 2021, 125, 366-375.	2.5	1
3	Ring size and nothing else matters: unusual regioselectivity of alkyne hydration by NHC gold(<scp>i</scp>) complexes. Chemical Communications, 2021, 57, 5686-5689.	4.1	15
4	Solvent-free palladium-catalyzed C–O cross-coupling of aryl bromides with phenols. Mendeleev Communications, 2021, 31, 409-411.	1.6	6
5	Solvent-free palladium-catalyzed C–O cross-coupling of aryl bromides with phenols. Mendeleev Communications, 2021, 31, 409-411.	1.6	3
6	NHC Pdii complexes for the solvent-free telomerisation of isoprene with methanol. Mendeleev Communications, 2021, 31, 478-480.	1.6	10
7	Efficient synthesis of 3-arylbutadiene sulfones using the Heck–Matsuda reaction. Mendeleev Communications, 2021, 31, 548-549.	1.6	3
8	Tetrylenes: Electronic Structure, Stability, Reactivity, and Ligand Properties—A Comparative DFT Study. Organometallics, 2021, 40, 3408-3423.	2.3	11
9	Polymerization of 5-Alkylidene-2-norbornenes with Highly Active Pd–N-Heterocyclic Carbene Complex Catalysts: Catalyst Structure–Activity Relationships. ACS Catalysis, 2020, 10, 1663-1678.	11.2	36
10	Impact of the RAFT/MADIX agent on protonated diallylammonium monomer cyclopolymerization with efficient chain transfer to monomer. European Polymer Journal, 2020, 122, 109363.	5.4	7
11	Polymerization of 5-Ethylidene-2-norbornene in the Presence of Pd–N-Heterocyclic Carbene Complexes with Phosphine and Pyridine Ligands. Polymer Science - Series B, 2020, 62, 319-327.	0.8	3
12	Undirected ortho-selectivity in C–H borylation of arenes catalyzed by NHC platinum(0) complexes. Mendeleev Communications, 2020, 30, 569-571.	1.6	4
13	Deep blue luminescent cyclometallated 1,2,3-triazol-5-ylidene iridium(iii) complexes. Mendeleev Communications, 2020, 30, 717-718.	1.6	8
14	New expanded-ring NHC platinum(0) complexes: Synthesis, structure and highly efficient diboration of terminal alkenes. Journal of Organometallic Chemistry, 2020, 912, 121140.	1.8	8
15	Modifications of addition poly(5-vinyl-2-norbornene) and gas-transport properties of the obtained polymers. Reactive and Functional Polymers, 2020, 149, 104513.	4.1	30
16	Comparative activity of yttrium(iii) pincer complexes in isoprene polymerization. Russian Chemical Bulletin, 2020, 69, 2307-2311.	1.5	4
17	Nitromethane as a reagent for the synthesis of 3-nitroindoles from 2-haloarylamine derivatives. Russian Chemical Bulletin, 2020, 69, 2370-2377.	1.5	12
18	Transitionâ€Metalâ€Free Synthesis of 1,2â€Disubstituted Indoles. European Journal of Organic Chemistry, 2019, 2019, 4844-4854.	2.4	11

#	Article	IF	CITATIONS
19	Alkynyl―or Azidoâ€Functionalized 1,2,3â€Triazoles: Selective MonoCuAAC Promoted by Physical Factors. ChemistrySelect, 2019, 4, 7470-7475.	1.5	5
20	Synthesis, Molecular, and Gas-Transport Properties of Homopolymers Based on 5-Ethylidene-2-norbornene and 5-Vinyl-2-norbornene. Polymer Science - Series C, 2019, 61, 86-101.	1.7	8
21	Solvent-free Suzuki and Stille cross-coupling reactions of 4- and 5-halo-1,2,3-triazoles. Mendeleev Communications, 2019, 29, 147-149.	1.6	20
22	Cyclometallated 1,2,3-triazol-5-ylidene iridium(III) complexes: synthesis, structure, and photoluminescence properties. Mendeleev Communications, 2019, 29, 128-131.	1.6	14
23	<i>In situ</i> transformations of Pd/NHC complexes with N-heterocyclic carbene ligands of different nature into colloidal Pd nanoparticles. Inorganic Chemistry Frontiers, 2019, 6, 482-492.	6.0	19
24	Solvent- and transition metal-free amide synthesis from phenyl esters and aryl amines. RSC Advances, 2019, 9, 1536-1540.	3.6	20
25	Effect of AuPd Bimetal Sensitization on Gas Sensing Performance of Nanocrystalline SnO2 Obtained by Single Step Flame Spray Pyrolysis. Nanomaterials, 2019, 9, 728.	4.1	31
26	DFT study of inter-ring haptotropic rearrangement in CpRu+ complexes of polycyclic aromatic ligands. Journal of Organometallic Chemistry, 2019, 889, 9-14.	1.8	2
27	Making endo-cyclizations favorable again: a conceptually new synthetic approach to benzotriazoles <i>via</i> azide group directed lithiation/cyclization of 2-azidoaryl bromides. Organic and Biomolecular Chemistry, 2019, 17, 4523-4534.	2.8	10
28	Mixed er-NHC/phosphine Pd(<scp>ii</scp>) complexes and their catalytic activity in the Buchwald–Hartwig reaction under solvent-free conditions. Dalton Transactions, 2019, 48, 3447-3452.	3.3	31
29	Organometallic chemistry of new carbon materials. Structure and dynamic behavior of group 6 metal tricabonyl complexes of graphene and perforated graphene: a DFT study. New Journal of Chemistry, 2019, 43, 17991-18002.	2.8	2
30	Azide–Alkyne Cycloaddition (CuAAC) in Alkane Solvents Catalyzed by Fluorinated NHC Copper(I) Complex. European Journal of Organic Chemistry, 2019, 2019, 1016-1020.	2.4	20
31	Addition homo- and copolymerization of 3-triethoxysilyltricyclo[4.2.1.02,5]non-7-ene. Russian Chemical Bulletin, 2018, 67, 121-126.	1.5	13
32	Mild and Regioselective Synthesis of 3â€CF ₃ â€Pyrazoles by the AgOTfâ€Catalysed Reaction of CF ₃ â€Ynones with Hydrazines. European Journal of Organic Chemistry, 2018, 2018, 3750-3755.	2.4	33
33	Rare-Earth Complexes with the 5,5′-Bitetrazolate Ligand - Synthesis, Structure, Luminescence Properties, and Combustion Catalysis. European Journal of Inorganic Chemistry, 2018, 2018, 805-815.	2.0	11
34	Evidence for Indirect Action of Ionizing Radiation in 18-Crown-6 Complexes with Halogenous Salts of Strontium: Simulation of Radiation-Induced Transformations in Ionic Liquid/Crown Ether Compositions. Journal of Physical Chemistry B, 2018, 122, 1992-2000.	2.6	7
35	Stannylation of Aryl Halides, Stille Crossâ€Coupling, and Oneâ€Pot, Twoâ€Step Stannylation/Stille Crossâ€Coupling Reactions under Solventâ€Free Conditions. European Journal of Organic Chemistry, 2018, 2018, 120-125.	2.4	21
36	One-pot two-step stannylation/Stille homocoupling of aryl bromides and iodides under solvent-free conditions. Mendeleev Communications, 2018, 28, 323-325.	1.6	8

#	Article	IF	CITATIONS
37	Addition Homo―and Copolymerizations of Dicyclopentadiene and 5â€ <i>n</i> â€Hexylnorbornene in the Presence of Pdâ€Nâ€Heterocyclic Carbene Complexes. Macromolecular Chemistry and Physics, 2018, 219, 1800323.	2.2	11
38	Microporous Materials Based on Norbornadiene-Based Cross-Linked Polymers. Polymers, 2018, 10, 1382.	4.5	17
39	Addition Polymerization of 5-Ethylidene-2-Norbornene in the Presence of Pd N-Heterocyclic Carbene Complexes. Doklady Chemistry, 2018, 479, 49-52.	0.9	5
40	Addition polymerization of 5-vinyl-2-norbornene and 5-ethylidene-2-norbornene. AIP Conference Proceedings, 2018, , .	0.4	2
41	Synthesis and properties of polynorbornenes containing trialkoxysilyl groups. AIP Conference Proceedings, 2018, , .	0.4	0
42	Janus tricyclononene polymers bearing tri(<i>n</i> -alkoxy)silyl side groups for membrane gas separation. Journal of Materials Chemistry A, 2018, 6, 19393-19408.	10.3	68
43	Synthesis and Study of the Thermal and Ballistic Properties of SMX. Central European Journal of Energetic Materials, 2018, 15, 30-46.	0.4	5
44	Eight-membered-ring diaminocarbenes bearing naphthalene moiety in the backbone: DFT studies, synthesis of amidinium salts, generation of free carbene, metal complexes, and solvent-free copper catalyzed azide–alkyne cycloaddition (CuAAC) reaction. Dalton Transactions, 2017, 46, 4331-4345.	3.3	43
45	Optimization Studies on Synthesis of <scp>TKX</scp> â€50. Chinese Journal of Chemistry, 2017, 35, 98-102.	4.9	16
46	Thermally induced inter-ring haptotropic rearrangements in π-complexes of molybdenum with nitrogen containing polyaromatic heterocycles: A DFT study. Journal of Organometallic Chemistry, 2017, 830, 212-218.	1.8	4
47	A general method of Suzuki–Miyaura cross-coupling of 4- and 5-halo-1,2,3-triazoles in water. Organic and Biomolecular Chemistry, 2017, 15, 9575-9578.	2.8	14
48	Reexamination of an Energetic Nitrate Ester SHN. Propellants, Explosives, Pyrotechnics, 2017, 42, 1014-1019.	1.6	8
49	General Method for the Synthesis of 1,4â€Disubstituted 5â€Haloâ€1,2,3â€triazoles. European Journal of Organic Chemistry, 2017, 2017, 5225-5230.	2.4	15
50	Pursuing reliable thermal analysis techniques for energetic materials: decomposition kinetics and thermal stability of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Physical Chemistry Chemical Physics, 2017, 19, 436-449.	2.8	88
51	Solvent-free Buchwald–Hartwig amination with low palladium loadings. Mendeleev Communications, 2017, 27, 618-620.	1.6	21
52	Hydrohydrazination of Arylalkynes Catalyzed by an Expanded Ring Nâ€Heterocyclic Carbene (erâ€NHC) Gold Complex Under Solventâ€Free Conditions . Advanced Synthesis and Catalysis, 2016, 358, 1463-1468.	4.3	27
53	New zirconocenes with 4,5,6,7-tetrahydroindene ligands. Synthesis and catalytic activity in the polymerization of ethylene and copolymerization of ethylene with hex-1-ene. Russian Chemical Bulletin, 2016, 65, 1580-1585.	1.5	4
54	An unprecedentedly simple method of synthesis of aryl azides and 3-hydroxytriazenes. Green Chemistry, 2016, 18, 5984-5988.	9.0	22

#	Article	IF	CITATIONS
55	Miyaura Borylation and Oneâ€Pot Twoâ€Step Homocoupling of Aryl Chlorides and Bromides under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2016, 358, 977-983.	4.3	49
56	Solventâ€Free Buchwald–Hartwig (Hetero)arylation of Anilines, Diarylamines, and Dialkylamines Mediated by Expandedâ€Ring Nâ€Heterocyclic Carbene Palladium Complexes. European Journal of Organic Chemistry, 2016, 2016, 1908-1914.	2.4	62
57	Combustion behavior and physico-chemical properties of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Thermochimica Acta, 2015, 614, 85-92.	2.7	88
58	DFT study of dihydrogen addition to molybdenum π-heteroaromatic complexes: a prerequisite step for the catalytic hydrodenitrogenation process. New Journal of Chemistry, 2015, 39, 8915-8921.	2.8	2
59	Catalytic activity of palladium complexes with stable diaminocarbenes containing five-, six- and seven-membered rings in the Suzuki-Miyaura reaction. Russian Chemical Bulletin, 2014, 63, 890-894.	1.5	12
60	Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. Russian Chemical Reviews, 2014, 83, 885-985.	6.5	182
61	Regio―and Stereoselective Dimerization of Arylacetylenes and Optical and Electrochemical Studies of (<i>E</i>)â€1,3â€Enynes. Advanced Synthesis and Catalysis, 2014, 356, 2671-2678.	4.3	28
62	Expandedâ€Ring <i>N</i> â€Heterocyclic Carbenes Efficiently Stabilize Gold(I) Cations, Leading to High Activity in Ï€â€Acidâ€Catalyzed Cyclizations. Chemistry - A European Journal, 2014, 20, 6162-6170.	3.3	59
63	Solventâ€Free Buchwald–Hartwig Reaction of Aryl and Heteroaryl Halides with Secondary Amines. European Journal of Organic Chemistry, 2014, 2014, 3319-3322.	2.4	49
64	Suzuki–Miyaura Cross oupling under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2013, 355, 3553-3557.	4.3	28
65	Reaction of donor-acceptor cyclopropanes with 1,3-diphenylisobenzofuran. Lewis acid effect on the reaction pathway. Russian Chemical Bulletin, 2013, 62, 2407-2423.	1.5	14
66	Expanded ring diaminocarbene palladium complexes: synthesis, structure, and Suzuki–Miyaura cross-coupling of heteroaryl chlorides in water. Dalton Transactions, 2013, 42, 6859.	3.3	82
67	A quantum-chemistry study of novel copper- and cobalt-complex based redox mediators for dye-sensitized solar cells. Moscow University Physics Bulletin (English Translation of Vestnik) Tj ETQq1 1 0.78431	L4ogBT/C	ove s lock 10 Tf
68	Dual reactivity of N-heterocyclic carbenes towards copper(ii) salts. Dalton Transactions, 2011, 40, 3074.	3.3	35
69	Novel Intramolecular CAryl–S Bond Activation by an Electron Rich, Ring-Expanded-NHC-Rh centre: A Combined Experimental and DFT Study. Australian Journal of Chemistry, 2011, 64, 1141.	0.9	5
70	Vibrational spectra and structural features of carbene analogs ElII(OCH2CH2NMe2)2 and ClElIIOCH2CH2NMe2 (ElII = Ge, Sn, Pb). Russian Chemical Bulletin, 2011, 60, 69-80.	1.5	4
71	Bis(μ ² -2-(dimethylamino)ethoxo- <i>N</i> , <i>O</i> , <i>O</i>)-di(phenolato- <i>O</i>)ditin(II): a high-resolution single-crystal X-ray diffraction and quantum chemical study. Acta Crystallographica Section B: Structural Science, 2011, 67, 315-323.	1.8	12
72	In search for a pentacoordinated monoorgano stannyl cation. Journal of Organometallic Chemistry, 2010, 695, 365-369.	1.8	6

#	Article	IF	CITATIONS
73	Reduction of C,N-chelated Diorganotin(IV) Dichlorides. Journal of Organometallic Chemistry, 2010, 695, 1843-1847.	1.8	15
74	Aminostannanes and aminostannylenes containing a C,N-chelated ligand. Journal of Organometallic Chemistry, 2010, 695, 2651-2657.	1.8	18
75	Mechanisms in the Reaction of Palladium(II)–πâ€Allyl Complexes with Aryl Halides: Evidence for NHC Exchange Between Two Palladium Complexes. Chemistry - A European Journal, 2009, 15, 7063-7073.	3.3	32
76	Reactivity of C,Nâ€Chelated Stannylene with Azobenzene. European Journal of Inorganic Chemistry, 2009, 2058-2061.	2.0	22
77	Six- and seven-membered ring carbenes: Rational synthesis of amidinium salts, generation of carbenes, synthesis of Ag(I) and Cu(I) complexes. Journal of Organometallic Chemistry, 2009, 694, 2454-2462.	1.8	89
78	C,N-chelated hexaorganodistannanes, and triorganotin(IV) hydrides and cyclopentadienides. Journal of Organometallic Chemistry, 2009, 694, 3000-3007.	1.8	26
79	Reactivity of a C,N-chelated stannylene with chalcogens. Journal of Organometallic Chemistry, 2009, 694, 2871-2874.	1.8	17
80	Heteroleptic tin (II) dialkoxides stabilized by intramolecular coordination Sn(OCH2CH2NMe2)(OR) (R=Me, Et, iPr, tBu, Ph). Synthesis, structure and catalytic activity in polyurethane synthesis. Journal of Organometallic Chemistry, 2009, 694, 3184-3189.	1.8	13
81	Germylene and stannylene (Me2NCH2CH2O)2E as strong Ïf-donor ligands for transition metal complexes [ML(CO)n] (E=Ge, Sn; M=Cr, Mo, W, n=4 or 5; M=Fe, n=4). Synthesis, spectroscopic and theoretical study. Journal of Organometallic Chemistry, 2009, 694, 3149-3153.	1.8	24
82	Nature of intramolecular O→Si bond in N-(trifluorosilylmethy)succinimide and N-(trifluorosilylmethy)phthalimide. Russian Journal of General Chemistry, 2009, 79, 1086-1089.	0.8	4
83	Reactivity of a C,N-Chelated Stannoxane. Organometallics, 2009, 28, 2629-2632.	2.3	41
84	N-heterocyclic carbenes bearing two, one and no nitrogen atoms at the ylidene carbon: insight from theoretical calculations. Dalton Transactions, 2009, , 7015.	3.3	96
85	New type of reactions of stannylenes with organic azides: Theoretical study. Computational and Theoretical Chemistry, 2008, 862, 49-52.	1.5	6
86	Initiation of ethylene polymerization on organoelement cations L2MMe+ (M = Ge, Sn) with intramolecular coordination bonds: a theoretical study. Russian Chemical Bulletin, 2008, 57, 1364-1373.	1.5	0
87	Reverse Kocheshkov reaction – Redistribution reactions between RSn(OCH2CH2NMe2)2Cl (R=Alk, Ar) and PhSnCl3: Experimental and DFT study. Journal of Organometallic Chemistry, 2008, 693, 3847-3850.	1.8	13
88	The heteronuclear bonding between heavier Group 14 elements and transition metals: a novel trioxystannate–iron complex with an unusual stannate fragment. Dalton Transactions, 2008, , 1140.	3.3	9
89	Solvent-Controlled Ring Size in Double C,N-Chelated Stannoxanes. Organometallics, 2008, 27, 5303-5308.	2.3	29
90	Can Sn(OCH2CH2NMe2)2 behave as a stannylene? Equatorial–axial isomerism in the tin(ii)–iron(0) complex (Me2NCH2CH2O)2Sn–Fe(CO)4. Dalton Transactions, 2007, , 3489.	3.3	28

#	Article	IF	CITATIONS
91	New organogermanium cations [RGe(OCH2CH2NME2)2]+ with intramolecular N→Ge coordination bonds. Russian Chemical Bulletin, 2007, 56, 926-934.	1.5	10
92	Donor-Stabilized Germyl Cations. Stable Pentacoordinate Germanium Chloride [PhGe(OCH2CH2NMe2)2][Cl]. Organometallics, 2006, 25, 2501-2504.	2.3	25
93	An Unusual Reaction of (Î ² -Dimethylaminoethoxy)triethyltin with Phenyltin Trichloride. The First X-ray Structural Evidence of the Existence of Complexes R2SnXY·R2SnXY (R = Alkyl, Aryl; X, Y = Hal, OR, X ≠Y) Both as Unsymmetrical Adducts [R2SnX2·R2SnY2] and Symmetrical Dimers [R2SnXY]2. European Journal of Inorganic Chemistry. 2006. 2006. 4271-4277.	2.0	15
94	New stable germylenes, stannylenes, and related compounds. Journal of Organometallic Chemistry, 2005, 690, 1172-1177.	1.8	30
95	Germanium carboxylates: the first X-ray diffraction study of germanium(II) dicarboxylate and germanium(IV) tetracarboxylate. Applied Organometallic Chemistry, 2005, 19, 774-777.	3.5	6
96	Molecular geometry and electronic structures of stable organic derivatives of divalent germanium and tin \$\$[(operatorname{Me} _3 operatorname{Si})_2 operatorname{N} {kern 1pt}{kern 1pt} Me_2]_n\$\$ (M = Ge, n = 1; M = Sn, n = 2): a theoretical study. Russian Chemical Bulletin, 2005, 54, 108-116.	1.5	5
97	Divalent silicon, germanium, and tin compounds with element—heteroatom bonds. Russian Chemical Bulletin, 2004, 53, 980-1006.	1.5	34
98	Energy Partitioning Analysis of the Bonding in Ethylene and Acetylene Complexes of Group 6, 8, and 11 Metals:Â (CO)5TMâ''C2Hxand Cl4TMâ''C2Hx(TM = Cr, Mo, W), (CO)4TMâ''C2Hx(TM = Fe, Ru, Os), and TM+â''C2Hx(TM = Cu, Ag, Au)â€,§,⊥. Journal of Physical Chemistry A, 2004, 108, 3134-3142.	2.5	146
99	New Stable Germylenes, Stannylenes, and Related Compounds. 1. Stable Germanium(II) and Tin(II) Compounds M(OCH2CH2NMe2)2(M = Ge, Sn) with Intramolecular Coordination Metalâ°'Nitrogen Bonds. Synthesis and Structure. Organometallics, 2003, 22, 1675-1681.	2.3	82
100	New Stable Germylenes, Stannylenes, and Related Compounds. 3. Stable Monomers XGeOCH2CH2NMe2(X = Cl, OCOMe) with Only One Intramolecular Coordination Metalâ^'Nitrogen Bond:Â Synthesis and Structure. Organometallics, 2003, 22, 5441-5446.	2.3	44
101	Title is missing!. Russian Chemical Bulletin, 2002, 51, 678-683.	1.5	3
102	Title is missing!. Russian Chemical Bulletin, 2002, 51, 721-753.	1.5	8
103	Title is missing!. Russian Chemical Bulletin, 2001, 50, 1679-1682.	1.5	6
104	Heteroorganic betaines. Russian Chemical Bulletin, 2000, 49, 1823-1830.	1.5	3