Run-Guang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/188848/publications.pdf Version: 2024-02-01

RUN-CHANCLE

#	Article	IF	CITATIONS
1	Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 2021, 373, 912-918.	6.0	304
2	Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nature Communications, 2018, 9, 2793.	5.8	189
3	Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys. Acta Materialia, 2017, 134, 236-248.	3.8	145
4	Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nature Materials, 2020, 19, 712-718.	13.3	95
5	Residual stress provides significant strengthening and ductility in gradient structured materials. Materials Research Letters, 2019, 7, 433-438.	4.1	74
6	Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 483-488.	3.3	52
7	Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy. Materials Research Letters, 2019, 7, 482-489.	4.1	51
8	Deformation-induced martensitic transformation kinetics and correlative micromechanical behavior of medium-Mn transformation-induced plasticity steel. Journal of Materials Science and Technology, 2019, 35, 1779-1786.	5.6	41
9	Ultrahigh cyclability of a large elastocaloric effect in multiferroic phase-transforming materials. Materials Research Letters, 2019, 7, 137-144.	4.1	41
10	In situ synchrotron X-ray diffraction investigations of the physical mechanism of ultra-low strain hardening in Ti-30Zr-10Nb alloy. Acta Materialia, 2018, 154, 45-55.	3.8	40
11	Superelastic effect in Ti-rich high entropy alloys via stress-induced martensitic transformation. Scripta Materialia, 2019, 162, 112-117.	2.6	39
12	Mechanical behavior in boron-microalloyed CoCrNi medium-entropy alloy studied by in situ high-energy X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139600.	2.6	32
13	Magnetic-field-induced strain-glass-to-martensite transition in a Fe-Mn-Ga alloy. Acta Materialia, 2020, 183, 11-23.	3.8	31
14	Plastic accommodation during tensile deformation of gradient structure. Science China Materials, 2021, 64, 1534-1544.	3.5	30
15	Ductile Ti-rich high-entropy alloy controlled by stress induced martensitic transformation and mechanical twinning. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 763, 138147.	2.6	29
16	In situ high-energy X-ray diffraction mapping of Lüders band propagation in medium-Mn transformation-induced plasticity steels. Materials Research Letters, 2018, 6, 662-667.	4.1	28
17	Effect of initial microstructure on the micromechanical behavior of Ti-55531 titanium alloy investigated by in-situ high-energy X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138806.	2.6	25
18	Superior strength-ductility synergy by hetero-structuring high manganese steel. Materials Research Letters, 2020, 8, 417-423.	4.1	25

Run-Guang Li

#	Article	IF	CITATIONS
19	The in-depth residual strain heterogeneities due to an indentation and a laser shock peening for Ti-6Al-4V titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 714, 140-145.	2.6	20
20	Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys. Applied Physics Letters, 2018, 113, .	1.5	19
21	Multiscale mechanical fatigue damage of stainless steel investigated by neutron diffraction and X-ray microdiffraction. Acta Materialia, 2019, 165, 336-345.	3.8	18
22	Unveiling the origins of work-hardening enhancement and mechanical instability in laser shock peened titanium. Acta Materialia, 2022, 229, 117810.	3.8	18
23	In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138555.	2.6	15
24	A Low-Cost Ni–Mn–Ti–B High-Temperature Shape Memory Alloy with Extraordinary Functional Properties. ACS Applied Materials & Interfaces, 2021, 13, 31870-31879.	4.0	15
25	Magnetic field-induced magnetostructural transition and huge tensile superelasticity in an oligocrystalline Ni–Cu–Co–Mn–In microwire. IUCrJ, 2019, 6, 843-853.	1.0	15
26	A brittle fracture mechanism in thermally aged duplex stainless steels revealed by in situ high-energy X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 264-271.	2.6	13
27	Large room-temperature elastocaloric effect in a bulk polycrystalline Ni-Ti-Cu-Co alloy with low isothermal stress hysteresis. Applied Materials Today, 2020, 21, 100844.	2.3	13
28	Cryogenic temperature toughening and strengthening due to gradient phase structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 358-364.	2.6	12
29	Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy. Journal of Materials Science and Technology, 2021, 73, 139-144.	5.6	11
30	Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire. Journal of Materials Science and Technology, 2020, 45, 44-48.	5.6	10
31	Manipulation of magnetostructural transition and realization of prominent multifunctional magnetoresponsive properties in NiCoMnIn alloys. Physical Review Materials, 2019, 3, .	0.9	10
32	In situ investigation of the deformation behaviors of Fe20Co30Cr25Ni25 and Fe20Co30Cr30Ni20 high entropy alloys by high-energy X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 795, 139936.	2.6	8
33	Microscopic stress and crystallographic orientation of hydrides precipitated in Zr-1Nb-0.01Cu cladding tube investigated by high-energy X-ray diffraction and EBSD. Journal of Nuclear Materials, 2020, 542, 152534.	1.3	5
34	In-situ synchrotron-based high energy X-ray diffraction study of the deformation mechanism of δ-hydrides in a commercially pure titanium. Scripta Materialia, 2022, 213, 114608.	2.6	5
35	Micromechanical Behaviors of Fe20Co30Cr25Ni25 High Entropy Alloys with Partially and Completely Recrystallized Microstructures Investigated by In-Situ High-Energy X-ray Diffraction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3674-3683.	1.1	4
36	Phase Evolution and Thermal Expansion Behavior of a γ′ Precipitated Ni-Based Superalloy by Synchrotron X-Ray Diffraction. Acta Metallurgica Sinica (English Letters), 2022, 35, 93-102.	1.5	4

Run-Guang Li

#	Article	IF	CITATIONS
37	Stress-induced reorientation of hydrides in Zr-1Nb-0.01Cu cladding tube studied by synchrotron X-ray diffraction and EBSD. Journal of Nuclear Materials, 2022, 558, 153374.	1.3	3
38	Ultra-wide-temperature-range superelasticity and intrinsic two-way shape memory effect in Co–Ni–Ga microwires. Applied Physics Letters, 2022, 120, 151903.	1.5	2
39	Novel elastic deformation mechanism in multifunctional Ti–Nb alloy. Materials Letters, 2017, 186, 378-381.	1.3	1
40	Grain-orientation-dependent phase transformation kinetics in austenitic stainless steel under low-temperature uniaxial loading. Materialia, 2021, 15, 101030.	1.3	1
41	Orientation-dependent fatigue damage in planar slip metals. IOP Conference Series: Materials Science and Engineering, 2018, 375, 012029.	0.3	Ο
42	Micromechanical behaviors related to confined deformation in pure titanium. MATEC Web of Conferences, 2020, 321, 12018.	0.1	0