Bianca S Gerendas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1888239/publications.pdf

Version: 2024-02-01

69 papers 3,231 citations

20 h-index 51 g-index

74 all docs

74 docs citations

74 times ranked 2843 citing authors

#	Article	IF	CITATIONS
1	Artificial intelligence in retina. Progress in Retinal and Eye Research, 2018, 67, 1-29.	15.5	469
2	Guidelines for the Management of Diabetic Macular Edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica, 2017, 237, 185-222.	1.9	456
3	Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology, 2018, 125, 549-558.	5. 2	384
4	Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica, 2019, 242, 123-162.	1.9	153
5	Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence. , 2018, 59, 3199.		144
6	Machine Learning to Analyze the Prognostic Value of Current Imaging Biomarkers in Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2018, 2, 24-30.	2.4	143
7	RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 1858-1874.	8.9	139
8	Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach. , 2017, 58, 3240.		128
9	Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context. Biomedical Optics Express, 2017, 8, 1874.	2.9	82
10	Correlation of 3-Dimensionally Quantified Intraretinal and Subretinal Fluid With Visual Acuity in Neovascular Age-Related Macular Degeneration. JAMA Ophthalmology, 2016, 134, 182.	2.5	80
11	Three-Dimensional Automated Choroidal Volume Assessment on Standard Spectral-Domain Optical Coherence Tomography and Correlation With the Level ofÂDiabetic Macular Edema. American Journal of Ophthalmology, 2014, 158, 1039-1048.e1.	3.3	70
12	Predictive imaging biomarkers relevant for functional and anatomical outcomes during ranibizumab therapy of diabetic macular oedema. British Journal of Ophthalmology, 2018, 102, 195-203.	3.9	68
13	Unsupervised Identification of Disease Marker Candidates in Retinal OCT Imaging Data. IEEE Transactions on Medical Imaging, 2019, 38, 1037-1047.	8.9	67
14	Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography. Eye, 2015, 29, 409-415.	2.1	54
15	Quantification of Fluid Resolution and Visual Acuity Gain in Patients With Diabetic Macular Edema Using Deep Learning. JAMA Ophthalmology, 2020, 138, 945.	2.5	49
16	Computational image analysis for prognosis determination in DME. Vision Research, 2017, 139, 204-210.	1.4	42
17	Predicting Macular Edema Recurrence from Spatio-Temporal Signatures in Optical Coherence Tomography Images. IEEE Transactions on Medical Imaging, 2017, 36, 1773-1783.	8.9	38
18	Reducing image variability across OCT devices with unsupervised unpaired learning for improved segmentation of retina. Biomedical Optics Express, 2020, 11, 346.	2.9	36

#	Article	IF	Citations
19	Optical coherence tomography in multiple sclerosis: A 3â€year prospective multicenter study. Annals of Clinical and Translational Neurology, 2021, 8, 2235-2251.	3.7	36
20	Quantitative comparison of macular segmentation performance using identical retinal regions across multiple spectral-domain optical coherence tomography instruments. British Journal of Ophthalmology, 2015, 99, 794-800.	3.9	34
21	Choroidal thickness maps from spectral domain and swept source optical coherence tomography: algorithmic versus ground truth annotation. British Journal of Ophthalmology, 2016, 100, 1372-1376.	3.9	34
22	U2-Net: A Bayesian U-Net Model With Epistemic Uncertainty Feedback For Photoreceptor Layer Segmentation In Pathological OCT Scans. , 2019, , .		34
23	Spatial Correspondence Between Intraretinal Fluid, Subretinal Fluid, and Pigment Epithelial Detachment in Neovascular Age-Related Macular Degeneration. , 2017, 58, 4039.		30
24	Analyzing and Predicting Visual Acuity Outcomes of Anti-VEGF Therapy by a Longitudinal Mixed Effects Model of Imaging and Clinical Data., 2017, 58, 4173.		29
25	Automated quantification of macular fluid in retinal diseases and their response to anti-VEGF therapy. British Journal of Ophthalmology, 2022, 106, 113-120.	3.9	27
26	The Distribution of Leakage on Fluorescein Angiography in Diabetic Macular Edema: A New Approach to Its Etiology. , 2017, 58, 3986.		25
27	Association of Changes in Macular Perfusion With Ranibizumab Treatment for Diabetic Macular Edema. JAMA Ophthalmology, 2018, 136, 315.	2.5	24
28	Multivendor Spectral-Domain Optical Coherence Tomography Dataset, Observer Annotation Performance Evaluation, and Standardized Evaluation Framework for Intraretinal Cystoid Fluid Segmentation. Journal of Ophthalmology, 2016, 2016, 1-8.	1.3	22
29	Supervised learning and dimension reduction techniques for quantification of retinal fluid in optical coherence tomography images. Eye, 2017, 31, 1212-1220.	2.1	22
30	Automated Quantification of Photoreceptor alteration in macular disease using Optical Coherence Tomography and Deep Learning. Scientific Reports, 2020, 10, 5619.	3.3	21
31	Evaluating the impact of vitreomacular adhesion on anti-VEGF therapy for retinal vein occlusion using machine learning. Scientific Reports, 2017, 7, 2928.	3.3	18
32	THE RAP STUDY, REPORT TWO. Retina, 2020, 40, 2255-2262.	1.7	17
33	IMPACT OF RESIDUAL SUBRETINAL FLUID VOLUMES ON TREATMENT OUTCOMES IN A SUBRETINAL FLUID–TOLERANT TREAT-AND-EXTEND REGIMEN. Retina, 2021, 41, 2221-2228.	1.7	17
34	Automated Fovea Detection in Spectral Domain Optical Coherence Tomography Scans of Exudative Macular Disease. International Journal of Biomedical Imaging, 2016, 2016, 1-9.	3.9	16
35	Spatio-Temporal Signatures to Predict Retinal Disease Recurrence. Lecture Notes in Computer Science, 2015, 24, 152-163.	1.3	16
36	Therapeutic response in the HAWK and HARRIER trials using deep learning in retinal fluid volume and compartment analysis. Eye, 2023, 37, 1160-1169.	2.1	14

#	Article	IF	CITATIONS
37	Using Cyclegans for Effectively Reducing Image Variability Across OCT Devices and Improving Retinal Fluid Segmentation. , $2019, , .$		13
38	Neuroretinal atrophy following resolution of macular oedema in retinal vein occlusion. British Journal of Ophthalmology, 2019, 103, 36-42.	3.9	13
39	The impact of structural optical coherence tomography changes on visual function in retinal vein occlusion. Acta Ophthalmologica, 2021, 99, 418-426.	1.1	13
40	Intravitreal Fluocinolone Acetonide May Decelerate Diabetic Retinal Neurodegeneration., 2019, 60, 2134.		12
41	Comparison of early diabetic retinopathy staging in asymptomatic patients between autonomous Al-based screening and human-graded ultra-widefield colour fundus images. Eye, 2022, 36, 510-516.	2.1	12
42	MORPHOLOGICAL AND FUNCTIONAL CHARACTERISTICS AT THE ONSET OF EXUDATIVE CONVERSION IN AGE-RELATED MACULAR DEGENERATION. Retina, 2020, 40, 1070-1078.	1.7	11
43	RAP study, report 1: novel subtype of macular neovascularisation type III, cilioretinal MNV3. British Journal of Ophthalmology, 2021, 105, 113-117.	3.9	11
44	THE RAP STUDY, REPORT 5: REDISCOVERING MACULAR NEOVASCULARIZATION TYPE 3. Retina, 2022, 42, 485-493.	1.7	11
45	Correlation between morphological characteristics in spectralâ€domainâ€optical coherence tomography, different functional tests and a patient's subjective handicap in acute central serous chorioretinopathy. Acta Ophthalmologica, 2018, 96, e776-e782.	1.1	10
46	A novel benchmark model for intelligent annotation of spectral-domain optical coherence tomography scans using the example of cyst annotation. Computer Methods and Programs in Biomedicine, 2016, 130, 93-105.	4.7	9
47	Stable registration of pathological 3D-OCT scans using retinal vessels. , 0, , .		9
48	Functional versus functional and anatomical criteria-guided ranibizumab treatment in patients with neovascular age-related macular degeneration $\hat{a} \in \text{``results from the randomized, phase IIIb OCTAVE study. BMC Ophthalmology, 2020, 20, 18.}$	1.4	8
49	The RAP study, report 3: Discoloration of the macular region in patients with macular neovascularization type 3. Acta Ophthalmologica, 2022, 100, .	1.1	7
50	The RAP study, report 4: morphological and topographical characteristics of multifocal macular neovascularization type 3. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 141-147.	1.9	7
51	Ganglion cell layer thickening in wellâ€controlled patients with type 1 diabetes: an early sign for diabetic retinopathy?. Acta Ophthalmologica, 2020, 98, e292-e300.	1.1	6
52	Choroidal Line Scan Measurements in Swept-Source Optical Coherence Tomography as Surrogates for Volumetric Thickness Assessment. American Journal of Ophthalmology, 2016, 162, 150-158.e1.	3.3	5
53	Effect of posterior vitreous detachment on treat-and-extend versus monthly ranibizumab for neovascular age-related macular degeneration. British Journal of Ophthalmology, 2020, 104, 899-903.	3.9	5
54	Segmentation of macular neovascularization and leakage in fluorescein angiography images in neovascular age-related macular degeneration using deep learning. Eye, 2023, 37, 1439-1444.	2.1	5

#	Article	IF	CITATIONS
55	Impact of B-Scan Averaging on Spectralis Optical Coherence Tomography Image Quality before and after Cataract Surgery. Journal of Ophthalmology, 2017, 2017, 1-8.	1.3	4
56	The prevalence of retinopathy in patients with type 1 diabetes treated with education-based intensified insulin therapy and its association with parameters of glucose control. Diabetes Research and Clinical Practice, 2019, 148, 234-239.	2.8	4
57	Foveal Avascular Zone Segmentation in Clinical Routine Fluorescein Angiographies Using Multitask Learning. Lecture Notes in Computer Science, 2019, , 35-42.	1.3	3
58	Improve synthetic retinal OCT images with present of pathologies and textural information. , 2016, , .		2
59	Deep Learning–Based Automated Optical Coherence Tomography Segmentation in Clinical Routine. JAMA Ophthalmology, 2021, 139, 973.	2.5	2
60	Microvascular abnormalities and long-term efficacy after stereotactic radiotherapy under continued intravitreal anti-VEGF treatment for neovascular AMD. British Journal of Ophthalmology, 2020, , bjophthalmol-2020-317563.	3.9	2
61	An Amplified-Target Loss Approach for Photoreceptor Layer Segmentation in Pathological OCT Scans. Lecture Notes in Computer Science, 2019, , 26-34.	1.3	2
62	Automated retinal fovea type distinction in spectral-domain optical coherence tomography of retinal vein occlusion. Proceedings of SPIE, 2015 , , .	0.8	1
63	Early and Intermediate Age-Related Macular Degeneration. , 2014, , 69-76.		1
64	Correspondence. Retina, 2022, 42, e18-e20.	1.7	1
65	Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures. Biomedical Optics Express, 2022, 13, 2566.	2.9	1
66	Association of microvascular biomarkers in fluorescein angiography with macrovascular-related mortality in clinical routine data. PLoS ONE, 2022, 17, e0266423.	2.5	1
67	Neovascular Age-Related Macular Degeneration. , 2014, , 89-99.		0
68	Automated vessel shadow segmentation of fovea-centered spectral-domain images from multiple OCT devices. Proceedings of SPIE, $2014, \ldots$	0.8	0
69	Geodesic denoising for optical coherence tomography images. , 2016, , .		O