
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1888142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptome analysis of neuropeptides in the beneficial insect lacewing (Chrysoperla carnea) identifies kinins as a selective pesticide target: a biostable kinin analogue with activity against the peach potato aphid Myzus persicae. Journal of Pest Science, 2023, 96, 253-264.	3.7	7
2	2020 Invertebrate Neuropeptide Award Announcement. Peptides, 2022, 151, 170762.	2.4	0
3	Solid-Phase Synthesis of an Insect Pyrokinin Analog Incorporating an Imidazoline Ring as Isosteric Replacement of a trans Peptide Bond. Molecules, 2021, 26, 3271.	3.8	4
4	Efficacy and biosafety assessment of neuropeptide CAPA analogues against the peachâ€potato aphid () Tj ETQ	q0 0 0 rgB ⁻ 3.0	T /Qyerlock 10
5	Tick CAPA propeptide cDNAs and receptor activity of endogenous tick pyrokinins and analogs: Towards discovering pyrokinin function in ticks. Peptides, 2021, 146, 170665.	2.4	4
6	Activity of native tick kinins and peptidomimetics on the cognate target G proteinâ€coupled receptor from the cattle fever tick, <i>Rhipicephalus microplus</i> (Acari: Ixodidae). Pest Management Science, 2020, 76, 3423-3431.	3.4	23
7	Conformational analysis of a cyclic AKH neuropeptide analog that elicits selective activity on locust versus honeybee receptor. Insect Biochemistry and Molecular Biology, 2020, 125, 103362.	2.7	6
8	Assessment of insecticidal effects and selectivity of <scp>CAPAâ€PK</scp> peptide analogues against the peachâ€potato aphid and four beneficial insects following topical exposure. Pest Management Science, 2020, 76, 3451-3458.	3.4	14
9	Evaluation of Aib and PEG-polymer insect kinin analogs on mosquito and tick GPCRs identifies potent new pest management tools with potentially enhanced biostability and bioavailability. General and Comparative Endocrinology, 2019, 278, 58-67.	1.8	10
10	Physiological effects of biostable kinin and CAPA analogs in the Chagas disease vector, Rhodnius prolixus. Insect Biochemistry and Molecular Biology, 2019, 114, 103223.	2.7	7
11	Desiccation, thermal stress and associated mortality in Drosophila fruit flies induced by neuropeptide analogue treatment. Journal of Pest Science, 2019, 92, 1123-1137.	3.7	10
12	Assessment of neuropeptide binding sites and the impact of biostable kinin and CAP2b analogue treatment on aphid (<scp><i>Myzus persicae</i></scp> and <i>Macrosiphum rosae</i>) stress tolerance. Pest Management Science, 2019, 75, 1750-1759.	3.4	13
13	Different processing of CAPA and pyrokinin precursors in the giant mealworm beetle Zophobas atratus (Tenebrionidae) and the boll weevil Anthonomus grandis grandis (Curculionidae). General and Comparative Endocrinology, 2018, 258, 53-59.	1.8	19
14	Invertebrate neuropeptides XVII. Peptides, 2017, 98, 1-2.	2.4	1
15	Peptidergic control in a fruit crop pest: The spotted-wing drosophila, Drosophila suzukii. PLoS ONE, 2017, 12, e0188021.	2.5	9
16	Leucokinin mimetic elicits aversive behavior in mosquito <i>Aedes aegypti</i> (L.) and inhibits the sugar taste neuron. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6880-6885.	7.1	41
17	Introduction. Peptides, 2016, 80, 1-3.	2.4	0
18	Insect capa neuropeptides impact desiccation and cold tolerance. Proceedings of the National	7.1	111

Academy of Sciences of the United States of America, 2015, 112, 2882-2887.

#	Article	IF	CITATIONS
19	Introduction: Invertebrate Neuropeptides XV. Peptides, 2015, 68, 1-2.	2.4	Ο
20	Sulfakinin is an important regulator of digestive processes in the migratory locust, Locusta migratoria. Insect Biochemistry and Molecular Biology, 2015, 61, 8-16.	2.7	32
21	Molecular and pharmacological characterization of the Chelicerata pyrokinin receptor from the southern cattle tick, Rhipicephalus (Boophilus) microplus. Insect Biochemistry and Molecular Biology, 2015, 60, 13-23.	2.7	24
22	Introduction: Invertebrate Neuropeptides XIV. Peptides, 2014, 53, 1-2.	2.4	1
23	Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea. Peptides, 2014, 53, 243-249.	2.4	38
24	Peptidomics applied: A new strategy for development of selective antagonists/agonists of insect pyrokinin (FXPRLamide) family using a novel conformational-mimetic motif. EuPA Open Proteomics, 2014, 3, 138-142.	2.5	7
25	The molecular characterization of the kinin transcript and the physiological effects of kinins in the blood-gorging insect, Rhodnius prolixus. Peptides, 2014, 53, 148-158.	2.4	30
26	Signaling Properties and Pharmacological Analysis of Two Sulfakinin Receptors from the Red Flour Beetle, Tribolium castaneum. PLoS ONE, 2014, 9, e94502.	2.5	16
27	Evaluation of insect CAP2b analogs with either an (E)-alkene, trans- or a (Z)-alkene, cis-Pro isostere identifies the Pro orientation for antidiuretic activity in the stink bug. Peptides, 2013, 41, 101-106.	2.4	5
28	Active diuretic peptidomimetic insect kinin analogs that contain β-turn mimetic motif 4-aminopyroglutamate and lack native peptide bonds. Peptides, 2012, 34, 262-265.	2.4	7
29	Biostable and PEG polymer-conjugated insect pyrokinin analogs demonstrate antifeedant activity and induce high mortality in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). Peptides, 2012, 34, 266-273.	2.4	25
30	Biostable multi-Aib analogs of tachykinin-related peptides demonstrate potent oral aphicidal activity in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). Peptides, 2011, 32, 587-594.	2.4	33
31	Disruption of insect diapause using agonists and an antagonist of diapause hormone. Proceedings of the United States of America, 2011, 108, 16922-16926.	7.1	84
32	A novel dihydroimidazoline trans-Pro mimetic analog is a selective PK PBAN agonist. Frontiers in Bioscience - Elite, 2010, E2, 195-203.	1.8	7
33	Interaction of Mimetic Analogs of Insect Kinin Neuropeptides with Arthropod Receptors. Advances in Experimental Medicine and Biology, 2010, 692, 27-48.	1.6	11
34	An active pseudopeptide analog of the leucokinin insect neuropeptide family. International Journal of Peptide and Protein Research, 2009, 37, 220-223.	0.1	17
35	Biostable agonists that match or exceed activity of native insect kinins on recombinant arthropod GPCRs. General and Comparative Endocrinology, 2009, 162, 122-128.	1.8	45
36	Toward the Development of Novel Pest Management Agents Based upon Insect Kinin Neuropeptide Analogues. Annals of the New York Academy of Sciences, 2009, 1163, 251-261.	3.8	28

#	Article	IF	CITATIONS
37	Potent activity of a PK/PBAN analog with an (E)-alkene, trans-Pro mimic identifies the Pro orientation and core conformation during interaction with HevPBANR-C receptor. Bioorganic and Medicinal Chemistry, 2009, 17, 4216-4220.	3.0	9
38	Conformational aspects and hyperpotent agonists of diapause hormone for termination of pupal diapause in the corn earworm. Peptides, 2009, 30, 596-602.	2.4	34
39	An amphiphilic, PK/PBAN analog is a selective pheromonotropic antagonist that penetrates the cuticle of a heliothine insect. Peptides, 2009, 30, 616-621.	2.4	23
40	Biostable β-amino acid PK/PBAN analogs: Agonist and antagonist properties. Peptides, 2009, 30, 608-615.	2.4	18
41	Invertebrate neuropeptides IX. Peptides, 2009, 30, 445-448.	2.4	0
42	Evaluation of a PK/PBAN analog with an (E)-alkene, trans-Pro isostere identifies the Pro orientation for activity in four diverse PK/PBAN bioassays. Peptides, 2009, 30, 1254-1259.	2.4	13
43	Introduction. Peptides, 2008, 29, 149-151.	2.4	Ο
44	A C-terminal aldehyde analog of the insect kinins inhibits diuresis in the housefly. Peptides, 2007, 28, 146-152.	2.4	7
45	Structure-activity relationships for in vitro diuretic activity of CAP2b in the housefly. Peptides, 2007, 28, 57-61.	2.4	17
46	Comparison of insect kinin analogs withcis-peptide bond motif 4-aminopyroglutamate identifies optimal stereochemistry for diuretic activity. Biopolymers, 2007, 88, 1-7.	2.4	14
47	Identification of PVK/CAP2b neuropeptides from single neurohemal organs of the stable fly and horn fly via MALDI-TOF/TOF tandem mass spectrometry. Peptides, 2006, 27, 521-526.	2.4	22
48	Aliphatic amino diacid Asu functions as an effective mimic of Tyr(SO3H) in sulfakinins for myotropic and food intake-inhibition activity in insects. Peptides, 2005, 26, 115-120.	2.4	15
49	Mass spectrometric assignment of Leu/lle in neuropeptides from single neurohemal organ preparations of insects. Peptides, 2005, 26, 2151-2156.	2.4	35
50	An active insect kinin analog with 4-aminopyroglutamate, a novelcis-peptide bond, type VI ?-turn motif. Biopolymers, 2004, 75, 412-419.	2.4	30
51	A C-terminal aldehyde insect kinin analog enhances inhibition of weight gain and induces significant mortality in Helicoverpa zea larvae. Peptides, 2003, 24, 1615-1621.	2.4	34
52	Activity of crustacean myotropic neuropeptides on the oviduct and hindgut of the crayfish <i>Astacus leptodactylus</i> . Invertebrate Reproduction and Development, 2002, 41, 137-142.	0.8	2
53	cis-peptide bond mimetic tetrazole analogs of the insect kinins identify the active conformation. Peptides, 2002, 23, 709-716.	2.4	63
54	Enhanced in vivo activity of peptidase-resistant analogs of the insect kinin neuropeptide family. Peptides, 2002, 23, 735-745.	2.4	74

#	Article	IF	CITATIONS
55	Occurrence of insect kinins in the flesh fly, stable fly and horn fly—mass spectrometric identification from single nerves and diuretic activity. Peptides, 2002, 23, 1885-1894.	2.4	13
56	Enhanced oral availability/pheromonotropic activity of peptidase-resistant topical amphiphilic analogs of pyrokinin/PBAN insect neuropeptides. Peptides, 2002, 23, 2035-2043.	2.4	42
57	Stimulation of alpha-Amylase Release in the Scallop Pecten maximus by the Myosuppressins: Structure-Activity Relationships. Annals of the New York Academy of Sciences, 1999, 897, 273-281.	3.8	15
58	Comparison of Active Conformations of the Insectatachykinin/tachykinin and Insect Kinin/Tyr-W-MIF-1 Neuropeptide Family Pairs. Annals of the New York Academy of Sciences, 1999, 897, 388-400.	3.8	42
59	Post-translational modifications of the insect sulfakinins. Sulfation, pyroglutamate-formation and O-methylation of glutamic acid. FEBS Journal, 1999, 263, 552-560.	0.2	56
60	Conformation in solution and dynamics of a structurally constrained linear insect kinin pentapeptide analogue. Biopolymers, 1999, 49, 403-413.	2.4	40
61	Isolation and immunocytochemical characterization of three tachykinin-related peptides from the mosquito, Culex salinarius. Neurochemical Research, 1998, 23, 189-202.	3.3	37
62	Immunocytochemical localisation and biological activity of diuretic peptides in the housefly, Musca domestica. Cell and Tissue Research, 1998, 294, 549-560.	2.9	42
63	Synthesis, Biological Activity, and Conformational Studies of Insect Allatostatin Neuropeptide Analogues Incorporating Turn-Promoting Moieties1Dedicated to Professor Stuart Schreiber on the occasion of his award of the Tetrahedron Prize.1. Bioorganic and Medicinal Chemistry, 1998, 6, 1379-1388.	3.0	31
64	Consensus chemistry and R-turn conformation of the active core of the insect kinin neuropeptide family. Chemistry and Biology, 1997, 4, 105-117.	6.0	54
65	Leads for insect neuropeptide mimetic development. Archives of Insect Biochemistry and Physiology, 1993, 22, 181-197.	1.5	70
66	Pseudopeptide Mimetic Analogs of Insect Neuropeptides. ACS Symposium Series, 1993, , 210-229.	0.5	10
67	A bifunctional heterodimeric insect neuropeptide analog. International Journal of Peptide and Protein Research, 1992, 40, 423-428.	0.1	9
68	Insect Myotropic Peptides. ACS Symposium Series, 1991, , 40-50.	0.5	17
69	Myotropic Insect Neuropeptide Families from the Cockroach Leucophaea maderae. ACS Symposium Series, 1991, , 194-214.	0.5	43
70	Locustatachykinin I and II, two novel insect neuropeptides with homology to peptides of the vertebrate tachykinin family. FEBS Letters, 1990, 261, 397-401.	2.8	215
71	Effect of sulfate position on rnyotropic activity of the gastrin/CCKâ€like insect leucosulfakinins. International Journal of Peptide and Protein Research, 1989, 33, 223-229.	0.1	14
72	3â€(1â€imidazoyl)â€6â€methoxyâ€2â€benzoxazolinone. A byproduct of the synthesis of 6â€MBOA With 1,1′ arbonyldiimidazole. Journal of Heterocyclic Chemistry, 1985, 22, 279-280.	2.6	5

#	Article	IF	CITATIONS
73	Presence of anN-6 acetate group shifts the alkylation site of the ambident nucleophile sodium 1-N-methylisoguanide. Journal of Heterocyclic Chemistry, 1985, 22, 953-956.	2.6	3
74	Unusual predominance of even-carbon hydrocarbons in an antarctic food chain. Lipids, 1985, 20, 629-633.	1.7	28
75	Convenient preparation of 2â€benzoxazolinones with 1,1 arbonyldiimidazole. Journal of Heterocyclic Chemistry, 1982, 19, 1545-1547.	2.6	40