
Wolfgang Seufert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1887329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stepwise assembly of the eukaryotic translation initiation factor 2 complex. Journal of Biological Chemistry, 2022, 298, 101583.	3.4	6
2	Thermofluor-Based Analysis of Protein Integrity and Ligand Interactions. Methods in Molecular Biology, 2022, , 247-257.	0.9	3
3	The C-terminal region of Net1 is an activator of RNA polymerase I transcription with conserved features from yeast to human. PLoS Genetics, 2019, 15, e1008006.	3.5	7
4	Compositional reorganization of the nucleolus in budding yeast mitosis. Molecular Biology of the Cell, 2019, 30, 591-606.	2.1	10
5	Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1. Molecular Biology of the Cell, 2016, 27, 2198-2212.	2.1	20
6	Insights into the cellular mechanism of the yeast ubiquitin ligase APC/C-Cdh1 from the analysis of in vivo degrons. Molecular Biology of the Cell, 2015, 26, 843-858.	2.1	17
7	Cdc123, a Cell Cycle Regulator Needed for eIF2 Assembly, Is an ATP-Grasp Protein with Unique Features. Structure, 2015, 23, 1596-1608.	3.3	16
8	Translation Initiation Requires Cell Division Cycle 123 (Cdc123) to Facilitate Biogenesis of the Eukaryotic Initiation Factor 2 (eIF2). Journal of Biological Chemistry, 2013, 288, 21537-21546.	3.4	30
9	A Safeguard Mechanism Regulates Rho GTPases to Coordinate Cytokinesis with the Establishment of Cell Polarity. PLoS Biology, 2013, 11, e1001495.	5.6	35
10	Establishment and Maintenance of Alternative Chromatin States at a Multicopy Gene Locus. Cell, 2011, 145, 543-554.	28.9	74
11	Enhancing the separation of phosphorylated proteins in gel electrophoresis with dinuclear bispyridylmethylamine–tyrosine–acrylamide complexes. Inorganica Chimica Acta, 2009, 362, 537-542.	2.4	2
12	A Nucleolus-Localized Activator of Cdc14 Phosphatase Supports rDNA Segregation in Yeast Mitosis. Current Biology, 2008, 18, 1001-1005.	3.9	31
13	Yeast Hct1 recognizes the mitotic cyclin Clb2 and other substrates of the ubiquitin ligase APC. EMBO Journal, 2001, 20, 5165-5175.	7.8	189
14	Asymmetric spindle pole localization of yeast Cdc15 kinase links mitotic exit and cytokinesis. Current Biology, 2001, 11, 345-350.	3.9	83
15	Control of Cyclin Ubiquitination by CDK-Regulated Binding of Hct1 to the Anaphase Promoting Complex. , 1998, 282, 1721-1724.		476
16	Yeast Hct1 Is a Regulator of Clb2 Cyclin Proteolysis. Cell, 1997, 90, 683-693.	28.9	464
17	pMPY-ZAP: A reusable polymerase chain reaction-directed gene disruption cassette forSaccharomyces cerevisiae. , 1996, 12, 129-134.		55
18	Molecular Cloning of the cDNA and Chromosome Localization of the Gene for Human Ubiquitin-conjugating Enzyme 9. Journal of Biological Chemistry, 1996, 271, 24811-24816.	3.4	77

WOLFGANG SEUFERT

#	Article	IF	CITATIONS
19	A Yeast Ubc9 Mutant Protein with Temperature-sensitive in Vivo Function Is Subject to Conditional Proteolysis by a Ubiquitin- and Proteasome-dependent Pathway. Journal of Biological Chemistry, 1996, 271, 25790-25796.	3.4	47
20	Use of polymerase chain reaction epitope tagging for protein tagging inSaccharomyces cerevisiae. Yeast, 1995, 11, 1265-1274.	1.7	307
21	Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature, 1995, 373, 78-81.	27.8	486
22	Ubiquitin-dependent protein degradation. , 1993, , 389-393.		0
23	Drosophila UbcD1 encodes a highly conserved ubiquitin-conjugating enzyme involved in selective protein degradation EMBO Journal, 1992, 11, 367-372.	7.8	72
24	In vivo function of the proteasome in the ubiquitin pathway EMBO Journal, 1992, 11, 3077-3080.	7.8	133
25	Ubiquitin as a degradation signal EMBO Journal, 1992, 11, 497-505.	7.8	234
26	Genetic analysis of ubiquitin-dependent protein degradation. Experientia, 1992, 48, 172-178.	1.2	18
27	Genetic analysis of the ubiquitin system. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1089, 127-139.	2.4	138
28	UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation EMBO Journal, 1990, 9, 4535-4541.	7.8	151
29	Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins EMBO Journal, 1990, 9, 543-550.	7.8	466
30	Nucleotide sequence of the yeast SDHI gene encoding a serine dehydratase homolog. Nucleic Acids Research, 1990, 18, 3653-3653.	14.5	5
31	Nucleotide sequence of two tRNAArg-tRNAAsptandem genes linked to duplicatedUBCgenes inSaccharomyces cerevisiae. Nucleic Acids Research, 1990, 18, 1638-1638.	14.5	8
32	Ubiquitin-conjugating enzymes: novel regulators of eukaryotic cells. Trends in Biochemical Sciences, 1990, 15, 195-198.	7.5	202
33	AsnC, a multifunctional regulator of genes located around the replication origin of Escherichia coli, oriC. Molecular Genetics and Genomics, 1988, 212, 99-104.	2.4	28
34	Functions of the DnaA protein of Escherichia coli in replication and transcription. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1988, 951, 351-358.	2.4	22
35	A novel replicon occurring naturally in Escherichia coli is a phage-plasmid hybrid EMBO Journal, 1988, 7, 4005-4010.	7.8	9
36	DnaA protein binding to the plasmid origin region can substitute for primosome assembly during replication of pBR322 in vitro. Cell, 1987, 48, 73-78.	28.9	67

#	Article	IF	CITATIONS
37	Start sites for bidirectional in vitro DNA replication inside the replication origin, oriC, of Escherichia coli EMBO Journal, 1987, 6, 2469-2472.	7.8	20
38	Initiation of Escherichia coli minichromosome replication at oriC and at protein n' recognition sites. Two modes for initiating DNA synthesis in vitro EMBO Journal, 1986, 5, 3401-3406.	7.8	28