Jiyoung Lee

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1886000/jiyoung-lee-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80
papers

1,325
citations

19
papers
g-index

82
ext. papers

1,741
ext. citations

5
avg, IF
L-index

#	Paper	IF	Citations
80	Potential environmental and health risk when returning to normal amidst COVID-19 vaccination Current Opinion in Environmental Science and Health, 2022, 26, 100328	8.1	
79	Fecal indicator bacteria along multiple environmental exposure pathways (water, food, and soil) and intestinal parasites among children in the rural northwest Ethiopia <i>BMC Gastroenterology</i> , 2022 , 22, 84	3	2
78	Fecal biomarkers of environmental enteric dysfunction and associated factors among children aged 24-59 months in east Dembiya district, northwest Ethiopia <i>BMC Gastroenterology</i> , 2022 , 22, 172	3	O
77	Development and validation of questionnaire to assess exposure of children to enteric infections in the rural northwest Ethiopia <i>Scientific Reports</i> , 2022 , 12, 6740	4.9	
76	Effects of local handwashing agents on microbial contamination of the hands in a rural setting in Northwest Ethiopia: a cluster randomised controlled trial <i>BMJ Open</i> , 2022 , 12, e056411	3	1
75	Wastewater surveillance of SARS-CoV-2 in dormitories as a part of comprehensive university campus COVID-19 monitoring. <i>Environmental Research</i> , 2022 , 113580	7.9	0
74	Enteric Pathogens and Carbapenem Resistance Genes are Widespread in the Fecal Contaminated Soils of Cattle Farms in the United States. <i>Environmental Advances</i> , 2021 , 100137	3.5	
73	Detection of SARS-CoV-2 in urban stormwater: An environmental reservoir and potential interface between human and animal sources. <i>Science of the Total Environment</i> , 2021 , 151046	10.2	3
72	Longitudinal health outcomes for enteric pathogens in preweaned calves on Ohio dairy farms. <i>Preventive Veterinary Medicine</i> , 2021 , 190, 105323	3.1	3
71	Acute cyanotoxin poisoning reveals a marginal effect on mouse gut microbiome composition but indicates metabolic shifts related to liver and gut inflammation. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 215, 112126	7	2
70	Colonization of toxic cyanobacteria on the surface and inside of leafy green: A hidden source of cyanotoxin production and exposure. <i>Food Microbiology</i> , 2021 , 94, 103655	6	5
69	Bacterial Movement in Subsurface Soil during Winter Irrigation of Reclaimed Wastewater. <i>Sustainability</i> , 2021 , 13, 9594	3.6	1
68	Effects of local handwashing agents on microbial contamination of hands in the rural settings of northwest Ethiopia: protocol for a two-arm, clustered-randomised controlled trial. <i>BMJ Open</i> , 2021 , 11, e046828	3	1
67	Wastewater SARS-CoV-2 monitoring as a community-level COVID-19 trend tracker and variants in Ohio, United States. <i>Science of the Total Environment</i> , 2021 , 801, 149757	10.2	19
66	Microcystis toxin-mediated tumor promotion and toxicity lead to shifts in mouse gut microbiome. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 206, 111204	7	5
65	Pulsed electric field application reduces carbapenem- and colistin-resistant microbiota and bla spread in urban wastewater. <i>Journal of Environmental Management</i> , 2020 , 265, 110529	7.9	5
64	Residential urban stormwater runoff: A comprehensive profile of microbiome and antibiotic resistance. <i>Science of the Total Environment</i> , 2020 , 723, 138033	10.2	21

(2018-2020)

63	Relationship between cyanobacterial bloom impacted drinking water sources and hepatocellular carcinoma incidence rates. <i>Harmful Algae</i> , 2020 , 95, 101801	5.3	8	
62	Cyanobacterial blooms modify food web structure and interactions in western Lake Erie. <i>Harmful Algae</i> , 2020 , 92, 101586	5.3	7	
61	Characterization of the gut microbiota of Nicaraguan children in a water insecure context. <i>American Journal of Human Biology</i> , 2020 , 32, e23371	2.7	6	
60	Drinking water treatment residuals from cyanobacteria bloom-affected areas: Investigation of potential impact on agricultural land application. <i>Science of the Total Environment</i> , 2020 , 706, 135756	10.2	15	
59	The threat of carbapenem-resistant bacteria in the environment: Evidence of widespread contamination of reservoirs at a global scale. <i>Environmental Pollution</i> , 2019 , 255, 113143	9.3	47	
58	Characterization of Cyanophages in Lake Erie: Interaction Mechanisms and Structural Damage of Toxic Cyanobacteria. <i>Toxins</i> , 2019 , 11,	4.9	8	
57	Indoor Microbiome and Antibiotic Resistance on Floor Surfaces: An Exploratory Study in Three Different Building Types. <i>International Journal of Environmental Research and Public Health</i> , 2019 , 16,	4.6	9	
56	Harmful algal blooms and liver diseases: focusing on the areas near the four major rivers in South Korea. <i>Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews</i> , 2019 , 37, 356-370	4.5	9	
55	Earth observation for public health: Biodiversity change and emerging disease surveillance. <i>Acta Astronautica</i> , 2019 , 160, 433-441	2.9	2	
54	A Novel Proof-of-Concept Sandwich Immunoassay for Screening Microcystin in Cyanobacteria Based on Michael Addition Reaction. <i>Analytical Sciences</i> , 2019 , 35, 107-111	1.7	1	
53	The microbiome and antibiotic resistance in integrated fishfarm water: Implications of environmental public health. <i>Science of the Total Environment</i> , 2019 , 649, 1491-1501	10.2	56	
52	Correlation Between Levels of Humic Acid and Fecal Indicator Bacteria: A Potential Predictor of Biosolids Stabilization. <i>Environmental Engineering Science</i> , 2018 , 35, 663-672	2	О	
51	Assessment of temperature and ultraviolet radiation effects on sunburn incidence at an inland U.S. Beach: A cohort study. <i>Environmental Research</i> , 2018 , 161, 479-484	7.9	5	
50	Removal of the algal toxin microcystin-LR in permeable coastal sediments: Physical and numerical models. <i>Limnology and Oceanography</i> , 2018 , 63, 1593-1604	4.8	2	
49	Simple and practical on-site treatment of high microcystin levels in water using polypropylene plastic. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2018 , 53, 1000-1005	2.3	1	
48	Mycosporine-like amino acids (MAAs)-producing Microcystis in Lake Erie: Development of a qPCR assay and insight into its ecology. <i>Harmful Algae</i> , 2018 , 77, 1-10	5.3	6	
47	Modeling household transmission dynamics: Application to waterborne diarrheal disease in Central Africa. <i>PLoS ONE</i> , 2018 , 13, e0206418	3.7	2	
46	Impact of Microcystin-LR on Liver Function Varies by Dose and Sex in Mice. <i>Toxins</i> , 2018 , 10,	4.9	11	

45	Optimization of extraction methods for quantification of microcystin-LR and microcystin-RR in fish, vegetable, and soil matrices using UPLC-MS/MS. <i>Harmful Algae</i> , 2018 , 76, 47-57	5.3	17
44	Tile Drainage and Anthropogenic Land Use Contribute to Harmful Algal Blooms and Microbiota Shifts in Inland Water Bodies. <i>Environmental Science & Environmental Science & Env</i>	10.3	13
43	Cyanobacterial Toxins in Freshwater and Food: Important Sources of Exposure to Humans. <i>Annual Review of Food Science and Technology</i> , 2017 , 8, 281-304	14.7	47
42	Comparison of survivability of Staphylococcus aureus and spores of Aspergillus niger on commonly used floor materials. <i>American Journal of Infection Control</i> , 2017 , 45, 717-722	3.8	9
41	Towards sustainable protection of public health: The role of an urban wetland as a frontline safeguard of pathogen and antibiotic resistance spread. <i>Ecological Engineering</i> , 2017 , 108, 547-555	3.9	20
40	Fresh produce and their soils accumulate cyanotoxins from irrigation water: Implications for public health and food security. <i>Food Research International</i> , 2017 , 102, 234-245	7	40
39	Spatiotemporal variability and environmental factors of harmful algal blooms (HABs) over western Lake Erie. <i>PLoS ONE</i> , 2017 , 12, e0179622	3.7	5
38	Associations between county-level land cover classes and cyanobacteria blooms in the United States. <i>Ecological Engineering</i> , 2017 , 108, 556-563	3.9	15
37	Microcystin in Lake Erie fish: Risk to human health and relationship to cyanobacterial blooms. Journal of Great Lakes Research, 2017 , 43, 1084-1090	3	13
36	Ten-year survey of cyanobacterial blooms in Ohioቼ waterbodies using satellite remote sensing. Harmful Algae, 2017 , 66, 13-19	5.3	26
35	Water Access, Sanitation, and Hygiene Conditions and Health Outcomes among Two Settlement Types in Rural Far North Cameroon. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	11
34	Sustainable Methods for Decontamination of Microcystin in Water Using Cold Plasma and UV with Reusable TiOlNanoparticle Coating. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	10
33	Satellite Remote Sensing of Drinking Water Intakes in Lake Erie for Cyanobacteria Population Using Two MODIS-Based Indicators as a Potential Tool for Toxin Tracking. <i>Frontiers in Marine Science</i> , 2017 , 4,	4.5	13
32	Neighborhood diversity of potentially pathogenic bacteria in drinking water from the city of Maroua, Cameroon. <i>Journal of Water and Health</i> , 2016 , 14, 559-70	2.2	14
31	High volume hydraulic fracturing operations: potential impacts on surface water and human health. <i>International Journal of Environmental Health Research</i> , 2016 , 26, 361-80	3.6	11
30	The Microbiota of Recreational Freshwaters and the Implications for Environmental and Public Health. <i>Frontiers in Microbiology</i> , 2016 , 7, 1826	5.7	33
29	Prevalence and diversity of Shiga toxin genes in Canada geese and water in western Lake Erie Region. <i>Journal of Great Lakes Research</i> , 2016 , 42, 476-481	3	6
28	Human health-related ecosystem services of avian-dense coastal wetlands adjacent to a Western Lake Erie swimming beach. <i>EcoHealth</i> , 2015 , 12, 77-87	3.1	7

(2013-2015)

Enhancing plant productivity while suppressing biofilm growth in a windowfarm system using beneficial bacteria and ultraviolet irradiation. <i>Canadian Journal of Microbiology</i> , 2015 , 61, 457-66	3.2	7
Changes in Microbial Water Quality Associated with an Extreme Recreational Water Event in Ohio, United States. <i>Water Quality, Exposure, and Health</i> , 2015 , 7, 491-501		3
Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. <i>Scientia Horticulturae</i> , 2015 , 195, 206-215	4.1	72
Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 11466-85	4.6	7
Cyanobacteria blooms and non-alcoholic liver disease: evidence from a county level ecological study in the United States. <i>Environmental Health</i> , 2015 , 14, 41	6	58
Impact of phytopathogen infection and extreme weather stress on internalization of Salmonella Typhimurium in lettuce. <i>International Journal of Food Microbiology</i> , 2014 , 168-169, 24-31	5.8	15
Occurrence of human enteric viruses at freshwater beaches during swimming season and its link to water inflow. <i>Science of the Total Environment</i> , 2014 , 472, 757-66	10.2	27
Muddying the waters: a new area of concern for drinking water contamination in Cameroon. <i>International Journal of Environmental Research and Public Health</i> , 2014 , 11, 12454-72	4.6	14
The Influence of Loading Rate and Variable Temperatures on Microbial Communities in Anaerobic Digesters. <i>Energies</i> , 2014 , 7, 785-803	3.1	13
Salmonella internalization in mung bean sprouts and pre- and postharvest intervention methods in a hydroponic system. <i>Journal of Food Protection</i> , 2014 , 77, 752-7	2.5	6
Methicillin-resistant Staphylococcus aureus in public transportation vehicles (buses): another piece to the epidemiologic puzzle. <i>American Journal of Infection Control</i> , 2014 , 42, 1285-90	3.8	18
Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods. <i>Journal of Water and Health</i> , 2014 , 12, 13-23	2.2	23
Integrating bacterial and viral water quality assessment to predict swimming-associated illness at a freshwater beach: a cohort study. <i>PLoS ONE</i> , 2014 , 9, e112029	3.7	11
Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study. <i>Water Research</i> , 2013 , 47, 6897-908	12.5	106
Development and application of a quantitative PCR assay targeting Catellicoccus marimammalium for assessing gull-associated fecal contamination at Lake Erie beaches. <i>Science of the Total Environment</i> , 2013 , 454-455, 1-8	10.2	37
Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health. <i>Journal of Microbiology</i> , 2013 , 51, 1-10	3	132
Application of host-specific source-tracking tools for rapid identification of fecal contamination in fresh produce by humans and livestock. <i>Journal of the Science of Food and Agriculture</i> , 2013 , 93, 1089-96	;4.3	2
Microbial Community Response to Seasonal Temperature Variation in a Small-Scale Anaerobic Digester. <i>Energies</i> , 2013 , 6, 5182-5199	3.1	12
	beneficial bacteria and ultraviolet irradiation. Canadian Journal of Microbiology, 2015, 61, 457-66 Changes in Microbial Water Quality, Exposure, and Health, 2015, 7, 491-501 Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. Scientia Horticulturae, 2015, 195, 206-215 Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches. International Journal of Environmental Research and Public Health, 2015, 12, 11466-85 Cyanobacteria blooms and non-alcoholic liver disease: evidence from a county level ecological study in the United States. Environmental Health, 2015, 14, 41 Impact of phytopathogen infection and extreme weather stress on internalization of Salmonella Typhimurium in lettuce. International Journal of Food Microbiology, 2014, 168-169, 24-31 Occurrence of human enteric viruses at freshwater beaches during swimming season and its link to water inflow. Science of the Total Environment, 2014, 472, 757-66 Muddying the waters: a new area of concern for drinking water contamination in Cameroon. International Journal of Environmental Research and Public Health, 2014, 11, 12454-72 The Influence of Loading Rate and Variable Temperatures on Microbial Communities in Anaerobic Digesters. Energies, 2014, 7, 785-803 Salmonella internalization in mung bean sprouts and pre- and postharvest intervention methods in a hydroponic system. Journal of Food Protection, 2014, 77, 752-7 Methicillin-resistant Staphylococcus aureus in public transportation vehicles (buses): another piece to the epidemiologic puzzle. American Journal of Infection Control, 2014, 42, 1285-90 Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioduminescence, quantitative PCR, and culture-based methods. Journal of Water and Health, 2014, 12, 13-23 Integrating bacterial and viral water quality assessment to predict swimming-associated Illness at a freshwater beach: a co	beneficial bacteria and ultraviolet irradiation. Canadian Journal of Microbiology, 2015, 61, 457-66 Changes in Microbial Water Quality Associated with an Extreme Recreational Water Event in Ohio, United States. Water Quality. Exposure, and Health, 2015, 7, 491-501 Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. Scientia Horticulturae, 2015, 195, 206-215 Associations among Human-Associated Fecal Contamination. Microcystis aeruginosa, and Microcystin at Lake Erie Beaches. International Journal of Environmental Research and Public Health, 2015, 12, 11466-85 Cyanobacteria blooms and non-alcoholic liver disease: evidence from a county level ecological study in the United States. Environmental Health, 2015, 14, 41 Impact of phytopathogen infection and extreme weather stress on internalization of Salmonella Typhimurium in lettuce. International Journal of Food Microbiology, 2014, 168-169, 24-31 Occurrence of human enteric viruses at freshwater beaches during swimming season and its link to water inflow. Science of the Total Environment, 2014, 472, 757-66 Muddying the waters: a new area of concern for drinking water contamination in Cameroon. International Journal of Environmental Research and Public Health, 2014, 11, 12454-72 The Influence of Loading Rate and Variable Temperatures on Microbial Communities in Anaerobic Digesters. Energies, 2014, 77, 758-803 3-1 Salmonella internalization in mung bean sprouts and pre- and postharvest intervention methods in a hydroponic system. Journal of Food Protection, 2014, 77, 752-7 Methicillin-resistant Staphylococcus aureus in public transportation vehicles (buses): another piece to the epidemiologic puzzle. American Journal of Infection Control, 2014, 42, 1285-90 sale Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods. Journal of Water and Health, 2014, 12, 123 Integrating bacterial an

9	In vivo phycocyanin flourometry as a potential rapid screening tool for predicting elevated microcystin concentrations at eutrophic lakes. <i>Environmental Science & Environmental Science & Environmen</i>	₹P.3	32
8	Arcobacter in Lake Erie beach waters: an emerging gastrointestinal pathogen linked with human-associated fecal contamination. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 5511-9	4.8	52
7	The impact of extreme weather events on Salmonella internalization in lettuce and green onion. <i>Food Research International</i> , 2012 , 45, 1118-1122	7	37
6	Rapid detection of bacteria in drinking water and water contamination case studies. <i>Frontiers of Earth Science</i> , 2011 , 5, 378-389	1.7	2
5	A novel genetic marker for the rapid detection of Bacteroides fragilis in recreational water as a human-specific faecal indicator. <i>Journal of Water and Health</i> , 2011 , 9, 253-64	2.2	8
4	Evaluation of new gyrB-based real-time PCR system for the detection of B. fragilis as an indicator of human-specific fecal contamination. <i>Journal of Microbiological Methods</i> , 2010 , 82, 311-8	2.8	47
3	Real-time determination of the efficacy of residual disinfection to limit wastewater contamination in a water distribution system using filtration-based luminescence. <i>Water Environment Research</i> , 2010 , 82, 475-8	2.8	3
2	Rapid detection of enterococci in marine beach water by immunomagnetic capture and bioluminescence and its comparison with conventional methods. <i>Journal of Environmental Health</i> , 2010 , 72, 8-13; quiz 39	0.4	
1	Wastewater-based epidemiology for tracking COVID-19 trend and variants of concern in Ohio, United States		6