Guang-Peng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1885913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. Chinese Chemical Letters, 2023, 34, 107592.	4.8	35
2	Recent Progress in Synthesizing Polyethers by Use of Organocatalysts. Synlett, 2022, 33, 8-15.	1.0	5
3	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2020. Chinese Chemical Letters, 2022, 33, 1650-1658.	4.8	47
4	Poly(ether ester) and related block copolymers via organocatalytic ringâ€opening polymerization. Journal of Polymer Science, 2022, 60, 3341-3353.	2.0	6
5	Insights into Thiourea-Based Bifunctional Catalysts for Efficient Conversion of CO ₂ to Cyclic Carbonates. Journal of Organic Chemistry, 2022, 87, 3145-3155.	1.7	10
6	Oneâ€Pot Construction of Sulfurâ€Rich Thermoplastic Elastomers Enabled by Metalâ€Free Selfâ€&witchable Catalysis and Airâ€Assisted Coupling. Angewandte Chemie, 2022, 134, .	1.6	2
7	Oneâ€Pot Construction of Sulfurâ€Rich Thermoplastic Elastomers Enabled by Metalâ€Free Selfâ€Switchable Catalysis and Airâ€Assisted Coupling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
8	Mechanism-Inspired Upgradation of Phosphonium-Containing Organoboron Catalysts for Epoxide-Involved Copolymerization and Homopolymerization. Macromolecules, 2022, 55, 6443-6452.	2.2	29
9	CO ₂ â€Based Dualâ€Tone Resists for Electron Beam Lithography. Advanced Functional Materials, 2021, 31, 2007417.	7.8	20
10	Precisely Alternating Copolymerization of Episulfides and Isothiocyanates: A Practical Route to Construct Sulfur-Rich Polymers. ACS Macro Letters, 2021, 10, 135-140.	2.3	22
11	Pinwheel-Shaped Tetranuclear Organoboron Catalysts for Perfectly Alternating Copolymerization of CO ₂ and Epichlorohydrin. Journal of the American Chemical Society, 2021, 143, 3455-3465.	6.6	105
12	Research Status of Hydrostatic Bearing Technology in Machine Tool. Recent Patents on Mechanical Engineering, 2021, 14, .	0.2	0
13	Electron Beam Lithography: CO ₂ â€Based Dualâ€Tone Resists for Electron Beam Lithography (Adv. Funct. Mater. 13/2021). Advanced Functional Materials, 2021, 31, 2170086.	7.8	1
14	Inclination angle effect of tribological performance for hydrostatic bearing having tilting oil pad under variable viscosity conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	0.8	10
15	Controlled Ring-Opening Polymerization of β-Butyrolactone <i>Via</i> Bifunctional Organoboron Catalysts. Macromolecules, 2021, 54, 5509-5517.	2.2	27
16	Record Productivity and Unprecedented Molecular Weight for Ringâ€Opening Copolymerization of Epoxides and Cyclic Anhydrides Enabled by Organoboron Catalysts. Angewandte Chemie, 2021, 133, 19402-19410.	1.6	12
17	Record Productivity and Unprecedented Molecular Weight for Ringâ€Opening Copolymerization of Epoxides and Cyclic Anhydrides Enabled by Organoboron Catalysts. Angewandte Chemie - International Edition, 2021, 60, 19253-19261.	7.2	55
18	Summary of Research Progress on Bearing Eccentric Loading. Recent Patents on Mechanical Engineering, 2021, 14, 289-297.	0.2	0

GUANG-PENG WU

#	Article	IF	CITATIONS
19	Perfectly Alternating Copolymerization of CO and Epoxides to Aliphatic Polyester Oligomers <i>via</i> Cooperative Organoboron–Cobalt Complexes. Macromolecules, 2021, 54, 9427-9436.	2.2	24
20	Modular Organoboron Catalysts Enable Transformations with Unprecedented Reactivity. Accounts of Chemical Research, 2021, 54, 4434-4448.	7.6	85
21	Sub-10 nm Feature Sizes of Disordered Polystyrene- <i>block</i> -poly(methyl methacrylate) Copolymer Films Achieved by Ionic Liquid Additives with Selectively Distributed Charge Interactions. ACS Applied Polymer Materials, 2020, 2, 427-436.	2.0	10
22	Thermoresponsive Diblock Copolymer Films with a Linear Shrinkage Behavior and Its Potential Application in Temperature Sensors. Langmuir, 2020, 36, 742-753.	1.6	16
23	Crosslinked Resin upported Bifunctional Organocatalyst for Conversion of CO ₂ into Cyclic Carbonates. ChemSusChem, 2020, 13, 4121-4127.	3.6	29
24	Scalable, Durable, and Recyclable Metalâ€Free Catalysts for Highly Efficient Conversion of CO ₂ to Cyclic Carbonates. Angewandte Chemie - International Edition, 2020, 59, 23291-23298.	7.2	99
25	Scalable, Durable, and Recyclable Metalâ€Free Catalysts for Highly Efficient Conversion of CO ₂ to Cyclic Carbonates. Angewandte Chemie, 2020, 132, 23491-23498.	1.6	26
26	Boundary-directed epitaxy of block copolymers. Nature Communications, 2020, 11, 4151.	5.8	22
27	Impact of Thermal History on the Kinetic Response of Thermoresponsive Poly(diethylene glycol) Tj ETQq1 1 0.7 Films Investigated by In Situ Neutron Reflectivity. Langmuir, 2020, 36, 6228-6237.	'84314 rgB 1.6	T /Overlock 1 10
28	Scalable Bifunctional Organoboron Catalysts for Copolymerization of CO ₂ and Epoxides with Unprecedented Efficiency. Journal of the American Chemical Society, 2020, 142, 12245-12255.	6.6	126
29	Highâ€Activity Organocatalysts for Polyether Synthesis via Intramolecular Ammonium Cation Assisted S _N 2 Ringâ€Opening Polymerization. Angewandte Chemie, 2020, 132, 17058-17065.	1.6	6
30	Highâ€Activity Organocatalysts for Polyether Synthesis via Intramolecular Ammonium Cation Assisted S _N 2 Ringâ€Opening Polymerization. Angewandte Chemie - International Edition, 2020, 59, 16910-16917.	7.2	48
31	Construction of polyphosphoesters with the main chain of rigid backbones and stereostructures <i>via</i> organocatalyzed ring-opening polymerization. Polymer Chemistry, 2020, 11, 3475-3480.	1.9	3
32	CO2-Based Block Copolymers: Present and Future Designs. Trends in Chemistry, 2020, 2, 750-763.	4.4	78
33	Polyamide nanofilms synthesized <i>via</i> controlled interfacial polymerization on a "jelly―surface. Chemical Communications, 2020, 56, 7249-7252.	2.2	35
34	Polypropylene Separators with Robust Mussel-inspired Coatings for High Lithium-ion Battery Performances. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1015-1022.	2.0	14
35	Heat Transfer Characteristics of High Speed and Heavy Load Hydrostatic Bearing. IEEE Access, 2019, 7, 110770-110780.	2.6	9
36	Highly elastic and degradable thermoset elastomers from CO ₂ -based polycarbonates and bioderived polyesters. Polymer Chemistry, 2019, 10, 5265-5270.	1.9	8

GUANG-PENG WU

#	Article	IF	CITATIONS
37	Triethyl borane-regulated selective production of polycarbonates and cyclic carbonates for the coupling reaction of CO ₂ with epoxides. Polymer Chemistry, 2019, 10, 3621-3628.	1.9	47
38	lonic conductivity and counterion condensation in nanoconfined polycation and polyanion brushes prepared from block copolymer templates. Molecular Systems Design and Engineering, 2019, 4, 365-378.	1.7	13
39	Enhanced Stain Removal and Comfort Control Achieved by Cross-Linking Light and Thermo Dual-Responsive Copolymer onto Cotton Fabrics. ACS Applied Materials & Interfaces, 2019, 11, 5414-5426.	4.0	48
40	High-Efficiency Construction of CO ₂ -Based Healable Thermoplastic Elastomers via a Tandem Synthetic Strategy. ACS Sustainable Chemistry and Engineering, 2019, 7, 1372-1380.	3.2	41
41	Synthesis of CO ₂ -Based Block Copolymers via Chain Transfer Polymerization Using Macroinitiators: Activity, Blocking Efficiency, and Nanostructure. Macromolecules, 2018, 51, 791-800.	2.2	35
42	Construction of Autonomic Self-Healing CO ₂ -Based Polycarbonates via One-Pot Tandem Synthetic Strategy. Macromolecules, 2018, 51, 1308-1313.	2.2	40
43	Robust Coatings via Catechol–Amine Codeposition: Mechanism, Kinetics, and Application. ACS Applied Materials & Interfaces, 2018, 10, 5902-5908.	4.0	110
44	A Bifunctional β-Diiminate Zinc Catalyst with CO ₂ /Epoxides Copolymerization and RAFT Polymerization Capacities for Versatile Block Copolymers Construction. Macromolecules, 2018, 51, 3640-3646.	2.2	39
45	Bioinspired Block Copolymer for Mineralized Nanoporous Membrane. ACS Nano, 2018, 12, 11471-11480.	7.3	54
46	Directed Self-Assembly of Polystyrene- <i>b</i> -poly(propylene carbonate) on Chemical Patterns via Thermal Annealing for Next Generation Lithography. Nano Letters, 2017, 17, 1233-1239.	4.5	97
47	Janus Membranes with Opposing Surface Wettability Enabling Oil-to-Water and Water-to-Oil Emulsification. ACS Applied Materials & Interfaces, 2017, 9, 5062-5066.	4.0	97
48	Interconnected ionic domains enhance conductivity in microphase separated block copolymer electrolytes. Journal of Materials Chemistry A, 2017, 5, 5619-5629.	5.2	50
49	Photocatalytic Nanofiltration Membranes with Selfâ€Cleaning Property for Wastewater Treatment. Advanced Functional Materials, 2017, 27, 1700251.	7.8	245
50	Separators with Biomineralized Zirconia Coatings for Enhanced Thermo- and Electro-Performance of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 21971-21978.	4.0	50
51	Fabrication of Nanoporous Alumina Ultrafiltration Membrane with Tunable Pore Size Using Block Copolymer Templates. Advanced Functional Materials, 2017, 27, 1701756.	7.8	87
52	Controlling Block Copolymer–Substrate Interactions by Homopolymer Brushes/Mats. Macromolecules, 2017, 50, 6733-6741.	2.2	17
53	Directed Selfâ€Assembly of Hierarchical Supramolecular Block Copolymer Thin Films on Chemical Patterns. Advanced Materials Interfaces, 2016, 3, 1600048.	1.9	9
54	Mechanistic Insights into Water-Mediated Tandem Catalysis of Metal-Coordination CO ₂ /Epoxide Copolymerization and Organocatalytic Ring-Opening Polymerization: One-Pot, Two Steps, and Three Catalysis Cycles for Triblock Copolymers Synthesis. Macromolecules, 2016, 49, 807-814.	2.2	108

GUANG-PENG WU

#	Article	IF	CITATIONS
55	Crystalline CO2 Copolymer from Epichlorohydrin via Co(III)-Complex-Mediated Stereospecific Polymerization. Macromolecules, 2013, 46, 2128-2133.	2.2	82
56	A Oneâ€Pot Synthesis of a Triblock Copolymer from Propylene Oxide/Carbon Dioxide and Lactide: Intermediacy of Polyol Initiators. Angewandte Chemie - International Edition, 2013, 52, 10602-10606.	7.2	150
57	CO ₂ Copolymers from Epoxides: Catalyst Activity, Product Selectivity, and Stereochemistry Control. Accounts of Chemical Research, 2012, 45, 1721-1735.	7.6	576
58	Tandem Metal-Coordination Copolymerization and Organocatalytic Ring-Opening Polymerization via Water To Synthesize Diblock Copolymers of Styrene Oxide/CO ₂ and Lactide. Journal of the American Chemical Society, 2012, 134, 17739-17745.	6.6	149
59	Stereoregular poly(cyclohexene carbonate)s: Unique crystallization behavior. Chinese Journal of Polymer Science (English Edition), 2012, 30, 487-492.	2.0	73
60	Perfectly Alternating Copolymerization of CO ₂ and Epichlorohydrin Using Cobalt(III)-Based Catalyst Systems. Journal of the American Chemical Society, 2011, 133, 15191-15199.	6.6	198
61	Alternating copolymerization of CO2 and styrene oxide with Co(iii)-based catalyst systems: differences between styrene oxide and propylene oxide. Energy and Environmental Science, 2011, 4, 5084.	15.6	94
62	Highly Selective Synthesis of CO ₂ Copolymer from Styrene Oxide. Macromolecules, 2010, 43, 9202-9204.	2.2	138