Fiorella Tonello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1885876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleolin: a cell portal for viruses, bacteria, and toxins. Cellular and Molecular Life Sciences, 2022, 79, 271.	2.4	16
2	Nucleolin Rescues TDP-43 Toxicity in Yeast and Human Cell Models. Frontiers in Cellular Neuroscience, 2021, 15, 625665.	1.8	12
3	Short Linear Motifs Characterizing Snake Venom and Mammalian Phospholipases A2. Toxins, 2021, 13, 290.	1.5	7
4	Localization of Myotoxin I and Myotoxin II from the venom of Bothrops asper in a murine model. Toxicon, 2021, 197, 48-54.	0.8	7
5	Enzymatic labelling of snake venom phospholipase A2 toxins. Toxicon, 2019, 170, 99-107.	0.8	13
6	Compartmentalized Cyclic AMP Production by the Bordetella pertussis and Bacillus anthracis Adenylate Cyclase Toxins Differentially Affects the Immune Synapse in T Lymphocytes. Frontiers in Immunology, 2018, 9, 919.	2.2	10
7	Cell surface nucleolin interacts with and internalizes Bothrops asper Lys49 phospholipase A2 and mediates its toxic activity. Scientific Reports, 2018, 8, 10619.	1.6	36
8	DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Research, 2017, 45, D219-D227.	6.5	242
9	Cellular Mechanisms of Action of Snake Phospholipase A2 Toxins. , 2017, , 49-65.		8
10	Cellular Mechanisms of Action of Snake Phospholipase A2 Toxins. , 2015, , 1-14.		3
11	Production in Escherichia coli, folding, purification and characterization of notexin with wild type sequence and with N-terminal and catalytic site mutations. Toxicon, 2014, 88, 11-20.	0.8	8
12	Bontoxilysins. , 2013, , 660-665.		0
13	Bacillus anthracis Factors for Phagosomal Escape. Toxins, 2012, 4, 536-553.	1.5	24
14	A Lys49-PLA2 myotoxin of Bothrops asper triggers a rapid death of macrophages that involves autocrine purinergic receptor signaling. Cell Death and Disease, 2012, 3, e343-e343.	2.7	20
15	The adenylate cyclase toxin of Bacillus anthracis is a potent promoter of TH17 cell development. Journal of Allergy and Clinical Immunology, 2011, 127, 1635-1637.	1.5	19
16	Imaging the cell entry of the anthrax oedema and lethal toxins with fluorescent protein chimeras. Cellular Microbiology, 2010, 12, 1435-1445.	1.1	50
17	The anthrax lethal factor and its MAPK kinase-specific metalloprotease activity. Molecular Aspects of Medicine, 2009, 30, 431-438.	2.7	71
18	Bacillus anthracis: Balancing innocent research with dual-use potential. International Journal of Medical Microbiology, 2008, 298, 345-364.	1.5	37

FIORELLA TONELLO

#	Article	IF	CITATIONS
19	Ratio of lethal and edema factors in rabbit systemic anthrax. Toxicon, 2008, 52, 824-828.	0.8	41
20	Protective activity and immunogenicity of two recombinant anthrax vaccines for veterinary use. Vaccine, 2008, 26, 5684-5688.	1.7	18
21	Binding of N-terminal fragments of anthrax edema factor (EFN) and lethal factor (LFN) to the protective antigen pore. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1436-1443.	1.4	6
22	cAMP imaging of cells treated with pertussis toxin, cholera toxin, and anthrax edema toxin. Biochemical and Biophysical Research Communications, 2008, 376, 429-433.	1.0	18
23	Glutamate exocytosis from astrocytes controls synaptic strength. Nature Neuroscience, 2007, 10, 331-339.	7.1	706
24	Anthrax toxins inhibit immune cell chemotaxis by perturbing chemokine receptor signalling. Cellular Microbiology, 2007, 9, 924-929.	1.1	68
25	Anthrax Lethal Factor (LF) Mediated Block of the Anthrax Protective Antigen (PA) Ion Channel:Â Effect of Ionic Strength and Voltageâ€. Biochemistry, 2006, 45, 3060-3068.	1.2	23
26	Anthrax toxins: a paradigm of bacterial immune suppression. Trends in Immunology, 2006, 27, 434-440.	2.9	152
27	Cloning, expression, purification, and characterization of Streptococcus pneumoniae IgA1 protease. Protein Expression and Purification, 2006, 45, 142-149.	0.6	19
28	Stable peptide inhibitors prevent binding of lethal and oedema factors to protective antigen and neutralize anthrax toxin in vivo. Biochemical Journal, 2006, 395, 157-163.	1.7	30
29	Cell entry and cAMP imaging of anthrax edema toxin. EMBO Journal, 2006, 25, 5405-5413.	3.5	68
30	Anthrax Edema Factor, Voltage-dependent Binding to the Protective Antigen Ion Channel and Comparison to LF Binding. Journal of Biological Chemistry, 2006, 281, 32335-32343.	1.6	19
31	Anthrax toxins suppress T lymphocyte activation by disrupting antigen receptor signaling. Journal of Experimental Medicine, 2005, 201, 325-331.	4.2	152
32	Chemical synthesis of the RGD-protein decorsin: Pro→Ala replacement reduces protein thermostability. Protein Engineering, Design and Selection, 2005, 18, 487-495.	1.0	11
33	Potent inhibitors of anthrax lethal factor from green tea. EMBO Reports, 2004, 5, 418-422.	2.0	74
34	Stop the killer: how to inhibit the anthrax lethal factor metalloprotease. Trends in Biochemical Sciences, 2004, 29, 282-285.	3.7	32
35	Tyrosine-728 and glutamic acid-735 are essential for the metalloproteolytic activity of the lethal factor of Bacillus anthracis. Biochemical and Biophysical Research Communications, 2004, 313, 496-502.	1.0	52

FIORELLA TONELLO

#	Article	IF	CITATIONS
37	The Metalloproteolytic Activity of the Anthrax Lethal Factor Is Substrate-inhibited. Journal of Biological Chemistry, 2003, 278, 40075-40078.	1.6	48
38	Screening inhibitors of anthrax lethal factor. Nature, 2002, 418, 386-386.	13.7	106
39	Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity. Toxicon, 2001, 39, 1151-1159.	0.8	45
40	The Neutrophil-Activating Protein (Hp-Nap) of Helicobacter pylori Is a Protective Antigen and a Major Virulence Factor. Journal of Experimental Medicine, 2000, 191, 1467-1476.	4.2	279
41	The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Molecular Microbiology, 1999, 34, 238-246.	1.2	159
42	Recombinant and Truncated Tetanus Neurotoxin Light Chain: Cloning, Expression, Purification, and Proteolytic Activity. Protein Expression and Purification, 1999, 15, 221-227.	0.6	14
43	In vitro biological activity and toxicity of tetanus and botulinum neurotoxins. Toxicology Letters, 1998, 102-103, 191-197.	0.4	8
44	Metal substitution of tetanus neurotoxin. Biochemical Journal, 1997, 322, 507-510.	1.7	22
45	X-ray Absorption Spectroscopy Study of Zinc Coordination in Tetanus Neurotoxin, Astacin, Alkaline Protease and Thermolysin. FEBS Journal, 1996, 235, 606-612.	0.2	19
46	Structural Studies on the Zinc-endopeptidase Light Chain of Tetanus Neurotoxin. FEBS Journal, 1995, 229, 61-69.	0.2	4
47	Intracellular Targets and Metalloprotease Activity of Tetanus and Botulism Neurotoxins. Current Topics in Microbiology and Immunology, 1995, 195, 257-274.	0.7	70
48	Structural Studies on the Zinc-endopeptidase Light Chain of Tetanus Neurotoxin. FEBS Journal, 1995, 229, 61-69.	0.2	21
49	Proteases. , 0, , 271-282.		3