Agostinho Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1885831/publications.pdf

Version: 2024-02-01

134 papers 7,616 citations

41 h-index

71102

82 g-index

144 all docs

144 docs citations

144 times ranked 10621 citing authors

#	Article	IF	CITATIONS
1	Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22. Immunity, 2013, 39, 372-385.	14.3	1,663
2	Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metabolism, 2016, 24, 807-819.	16.2	584
3	Immunometabolic Pathways in BCG-Induced Trained Immunity. Cell Reports, 2016, 17, 2562-2571.	6.4	467
4	COVID-19 Associated Pulmonary Aspergillosis (CAPA)—From Immunology to Treatment. Journal of Fungi (Basel, Switzerland), 2020, 6, 91.	3.5	292
5	Genetic PTX3 Deficiency and Aspergillosis in Stem-Cell Transplantation. New England Journal of Medicine, 2014, 370, 421-432.	27.0	265
6	Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood, 2010, 116, 5394-5402.	1.4	259
7	The emergence of COVID-19 associated mucormycosis: a review of cases from 18 countries. Lancet Microbe, The, 2022, 3, e543-e552.	7.3	255
8	Polymorphisms in Tollâ€Like Receptor Genes and Susceptibility to Pulmonary Aspergillosis. Journal of Infectious Diseases, 2008, 197, 618-621.	4.0	220
9	COVID-19-Associated Candidiasis (CAC): An Underestimated Complication in the Absence of Immunological Predispositions?. Journal of Fungi (Basel, Switzerland), 2020, 6, 211.	3.5	170
10	Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature, 2018, 555, 382-386.	27.8	157
11	TLR3 essentially promotes protective class l–restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood, 2012, 119, 967-977.	1.4	117
12	<i>Aspergillus fumigatus</i> and aspergillosis: From basics to clinics. Studies in Mycology, 2021, 100, 100115-100115.	7.2	109
13	IL-22 and IDO1 Affect Immunity and Tolerance to Murine and Human Vaginal Candidiasis. PLoS Pathogens, 2013, 9, e1003486.	4.7	102
14	Dectin-1 isoforms contribute to distinct Th1/Th17 cell activation in mucosal candidiasis. Cellular and Molecular Immunology, 2012, 9, 276-286.	10.5	97
15	Polymorphisms in Toll-like receptor genes and susceptibility to infections in allogeneic stem cell transplantation. Experimental Hematology, 2009, 37, 1022-1029.	0.4	96
16	Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Science of the Total Environment, 2007, 377, 233-243.	8.0	92
17	Th17/Treg Imbalance in Murine Cystic Fibrosis Is Linked to Indoleamine 2,3-Dioxygenase Deficiency but Corrected by Kynurenines. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 609-620.	5. 6	86
18	CD4+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. Journal of Clinical Investigation, 2012, 122, 1816-1831.	8.2	71

#	Article	IF	CITATIONS
19	The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells. Journal of Experimental Medicine, 2016, 213, 2167-2185.	8.5	69
20	Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity. Nature Communications, 2020, 11 , 2282.	12.8	68
21	Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent LC3-associated phagocytosis. Nature Microbiology, 2018, 3, 791-803.	13.3	66
22	Intranasally delivered siRNA targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunology, 2010, 3, 193-205.	6.0	64
23	Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO. Cellular and Molecular Immunology, 2010, 7, 459-470.	10.5	62
24	Human Genetic Susceptibility to Invasive Aspergillosis. PLoS Pathogens, 2013, 9, e1003434.	4.7	58
25	Positive allosteric modulation of indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3848-3857.	7.1	58
26	Nitric Oxide Signaling Is Disrupted in the Yeast Model for Batten Disease. Molecular Biology of the Cell, 2007, 18, 2755-2767.	2.1	56
27	Towards a molecular genetic system for the pathogenic fungus Paracoccidioides brasiliensis. Fungal Genetics and Biology, 2007, 44, 1387-1398.	2.1	54
28	Cdc42p controls yeast-cell shape and virulence of Paracoccidioides brasiliensis. Fungal Genetics and Biology, 2009, 46, 919-926.	2.1	54
29	Evaluation of Bronchoalveolar Lavage Fluid Cytokines as Biomarkers for Invasive Pulmonary Aspergillosis in At-Risk Patients. Frontiers in Microbiology, 2017, 8, 2362.	3.5	54
30	The Cell Biology of the Trichosporon-Host Interaction. Frontiers in Cellular and Infection Microbiology, 2017, 7, 118.	3.9	53
31	Association of a variable number tandem repeat in the NLRP3 gene in women with susceptibility to RVVC. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 797-801.	2.9	51
32	Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes. JCI Insight, 2018, 3, .	5.0	51
33	PTX3 Binds MD-2 and Promotes TRIF-Dependent Immune Protection in Aspergillosis. Journal of Immunology, 2014, 193, 2340-2348.	0.8	49
34	Multiplex PCR identification of eight clinically relevant <i>Candida</i> species. Medical Mycology, 2007, 45, 619-627.	0.7	48
35	DAMP signaling in fungal infections and diseases. Frontiers in Immunology, 2012, 3, 286.	4.8	48
36	Characterization of Specific Immune Responses to Different Aspergillus Antigens during the Course of Invasive Aspergillosis in Hematologic Patients. PLoS ONE, 2013, 8, e74326.	2.5	48

#	Article	IF	CITATIONS
37	Amino acid metabolism as drug target in autoimmune diseases. Autoimmunity Reviews, 2019, 18, 334-348.	5.8	48
38	Genetically-Determined Hyperfunction of the \$100B/RAGE Axis Is a Risk Factor for Aspergillosis in Stem Cell Transplant Recipients. PLoS ONE, 2011, 6, e27962.	2.5	47
39	PTX3-Based Genetic Testing for Risk of Aspergillosis After Lung Transplant: Table 1 Clinical Infectious Diseases, 2015, 61, 1893-1894.	5.8	46
40	Genetic variability of innate immunity impacts human susceptibility to fungal diseases. International Journal of Infectious Diseases, 2010, 14, e460-e468.	3.3	44
41	Prognostic significance of genetic variants in the IL-23/Th17 pathway for the outcome of T cell-depleted allogeneic stem cell transplantation. Bone Marrow Transplantation, 2010, 45, 1645-1652.	2.4	42
42	Hypoxia Promotes Danger-mediated Inflammation via Receptor for Advanced Glycation End Products in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1338-1350.	5.6	39
43	Flotillin-Dependent Membrane Microdomains Are Required for Functional Phagolysosomes against Fungal Infections. Cell Reports, 2020, 32, 108017.	6.4	39
44	The Emergence of COVID-19 Associated Mucormycosis: Analysis of Cases From 18 Countries. SSRN Electronic Journal, $0, , .$	0.4	39
45	Genetic deficiency of NOD2 confers resistance to invasive aspergillosis. Nature Communications, 2018, 9, 2636.	12.8	38
46	IL-10 overexpression predisposes to invasive aspergillosis by suppressing antifungal immunity. Journal of Allergy and Clinical Immunology, 2017, 140, 867-870.e9.	2.9	37
47	The C Allele of rs5743836 Polymorphism in the Human TLR9 Promoter Links IL-6 and TLR9 Up-Regulation and Confers Increased B-Cell Proliferation. PLoS ONE, 2011, 6, e28256.	2.5	37
48	The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma. Genes and Immunity, 2012, 13, 197-201.	4.1	35
49	Polymorphisms in Host Immunity-Modulating Genes and Risk of Invasive Aspergillosis: Results from the AspBIOmics Consortium. Infection and Immunity, 2016, 84, 643-657.	2.2	35
50	Interleukin-6 Neutralization by Antibodies Immobilized at the Surface of Polymeric Nanoparticles as a Therapeutic Strategy for Arthritic Diseases. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13839-13850.	8.0	35
51	Genetic Variation in Autophagy-Related Genes Influences the Risk and Phenotype of Buruli Ulcer. PLoS Neglected Tropical Diseases, 2016, 10, e0004671.	3.0	35
52	From memory to antifungal vaccine design. Trends in Immunology, 2012, 33, 467-474.	6.8	34
53	Immunotherapy of aspergillosis. Clinical Microbiology and Infection, 2012, 18, 120-125.	6.0	32
54	The Absence of HIF-1α Increases Susceptibility to Leishmania donovani Infection via Activation of BNIP3/mTOR/SREBP-1c Axis. Cell Reports, 2020, 30, 4052-4064.e7.	6.4	32

#	Article	IF	CITATIONS
55	Neutrophil Responses to Aspergillosis: New Roles for Old Players. Mycopathologia, 2014, 178, 387-393.	3.1	31
56	Immunity and Tolerance to Fungi in Hematopoietic Transplantation: Principles and Perspectives. Frontiers in Immunology, 2012, 3, 156.	4.8	26
57	Paving the way for predictive diagnostics and personalized treatment of invasive aspergillosis. Frontiers in Microbiology, 2015, 6, 411.	3.5	26
58	The microbiome-metabolome crosstalk in the pathogenesis of respiratory fungal diseases. Virulence, 2017, 8, 673-684.	4.4	25
59	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2020, 14, e0008125.	3.0	25
60	Let's talk about sex characteristicsâ€"As a risk factor for invasive fungal diseases. Mycoses, 2022, 65, 599-612.	4.0	25
61	Study of disease-relevant polymorphisms in the TLR4 and TLR9 genes: A novel method applied to the analysis of the Portuguese population. Molecular and Cellular Probes, 2007, 21, 316-320.	2.1	24
62	Current Challenges for IDO2 as Target in Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 679953.	4.8	24
63	The impact of IL-10 dynamic modulation on host immune response against visceral leishmaniasis. Cytokine, 2018, 112, 16-20.	3.2	23
64	Biofunctionalized Liposomes to Monitor Rheumatoid Arthritis Regression Stimulated by Interleukinâ€23 Neutralization. Advanced Healthcare Materials, 2021, 10, e2001570.	7.6	21
65	L-Threonine Supplementation During Colitis Onset Delays Disease Recovery. Frontiers in Physiology, 2018, 9, 1247.	2.8	20
66	Host Genetic Signatures of Susceptibility to Fungal Disease. Current Topics in Microbiology and Immunology, 2018, 422, 237-263.	1.1	20
67	Cracking the Toll-like receptor code in fungal infections. Expert Review of Anti-Infective Therapy, 2010, 8, 1121-1137.	4.4	19
68	Inflammation in aspergillosis: the good, the bad, and the therapeutic. Annals of the New York Academy of Sciences, 2012, 1273, 52-59.	3.8	19
69	Lung microbiota predict invasive pulmonary aspergillosis and its outcome in immunocompromised patients. Thorax, 2022, 77, 283-291.	5.6	19
70	TLR9 Activation Dampens the Early Inflammatory Response to Paracoccidioides brasiliensis, Impacting Host Survival. PLoS Neglected Tropical Diseases, 2013, 7, e2317.	3.0	18
71	Impact of Paracoccin Gene Silencing on <i>Paracoccidioides brasiliensis</i> Virulence. MBio, 2017, 8, .	4.1	18
72	Performance assessment of 11 commercial serological tests for SARS-CoV-2 on hospitalised COVID-19 patients. International Journal of Infectious Diseases, 2021, 104, 661-669.	3.3	18

#	Article	IF	CITATIONS
73	A High Rate of Recurrent Vulvovaginal Candidiasis and Therapeutic Failure of Azole Derivatives Among Iranian Women. Frontiers in Microbiology, 2021, 12, 655069.	3.5	18
74	Serum amyloid P component is an essential element of resistance against Aspergillus fumigatus. Nature Communications, 2021, 12, 3739.	12.8	18
75	Host Defense Pathways Against Fungi: The Basis for Vaccines and Immunotherapy. Frontiers in Microbiology, 2012, 3, 176.	3.5	17
76	The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression. Frontiers in Immunology, 2017, 8, 1777.	4.8	17
77	Genetic defects in fungal recognition and susceptibility to invasive pulmonary aspergillosis. Medical Mycology, 2019, 57, S211-S218.	0.7	16
78	Comparative host transcriptome in response to pathogenic fungi identifies common and species-specific transcriptional antifungal host response pathways. Computational and Structural Biotechnology Journal, 2021, 19, 647-663.	4.1	16
79	Regulation of gliotoxin biosynthesis and protection in Aspergillus species. PLoS Genetics, 2022, 18, e1009965.	3.5	16
80	Neuraminidase and SIGLEC15 modulate the host defense against pulmonary aspergillosis. Cell Reports Medicine, 2021, 2, 100289.	6.5	15
81	Genetic susceptibility to aspergillosis in allogeneic stem-cell transplantation. Medical Mycology, 2011, 49, S137-S143.	0.7	14
82	Immunogenetic Profiling to Predict Risk of Invasive Fungal Diseases: Where Are We Now?. Immunological Investigations, 2011, 40, 723-734.	2.0	14
83	Cytotoxic T lymphocyte antigen-4 gene polymorphisms and susceptibility to type 1Âautoimmune hepatitis in the Tunisian population. Genes and Diseases, 2018, 5, 256-262.	3.4	14
84	Common Genetic Polymorphisms within NFκB-Related Genes and the Risk of Developing Invasive Aspergillosis. Frontiers in Microbiology, 2016, 7, 1243.	3.5	13
85	Incidentally Discovered Hepatocellular Carcinoma in Explanted Liver: Clinical, Histopathologic Features and Outcome. Transplantation Proceedings, 2015, 47, 1051-1054.	0.6	12
86	Immune Parameters for Diagnosis and Treatment Monitoring in Invasive Mold Infection. Journal of Fungi (Basel, Switzerland), 2019, 5, 116.	3.5	12
87	Host genetics and invasive fungal diseases: towards improved diagnosis and therapy?. Expert Review of Anti-Infective Therapy, 2012, 10, 257-259.	4.4	10
88	Aspergillus fumigatus DHN-Melanin. Current Topics in Microbiology and Immunology, 2020, 425, 17-28.	1.1	10
89	Aspergillus fumigatus Acetate Utilization Impacts Virulence Traits and Pathogenicity. MBio, 2021, 12, e0168221.	4.1	10
90	Toward the Identification of a Genetic Risk Signature for Pulmonary Aspergillosis in Chronic Obstructive Pulmonary Disease. Clinical Infectious Diseases, 2018, 66, 1153-1154.	5.8	9

#	Article	IF	CITATIONS
91	PTX3 Polymorphisms Influence Cytomegalovirus Reactivation After Stem-Cell Transplantation. Frontiers in Immunology, 2019, 10, 88.	4.8	9
92	Biofunctional Nanofibrous Substrate for Local TNF-Capturing as a Strategy to Control Inflammation in Arthritic Joints. Nanomaterials, 2019, 9, 567.	4.1	9
93	Proteome analysis of bronchoalveolar lavage fluids reveals host and fungal proteins highly expressed during invasive pulmonary aspergillosis in mice and humans. Virulence, 2020, 11, 1337-1351.	4.4	8
94	Polymorphisms within the <i>ARNT2</i> and <i>CX3CR1</i> Genes Are Associated with the Risk of Developing Invasive Aspergillosis. Infection and Immunity, 2020, 88, .	2.2	8
95	Fungal and host protein persulfidation are functionally correlated and modulate both virulence and antifungal response. PLoS Biology, 2021, 19, e3001247.	5.6	8
96	Early IL-10 promotes vasculature-associated CD4+ T cells unable to control Mycobacterium tuberculosis infection. JCI Insight, 2021, 6, .	5.0	8
97	PTX3 Deficiency and Aspergillosis. New England Journal of Medicine, 2014, 370, 1665-1667.	27.0	7
98	Fungal Vaccines and Immunotherapeutics: Current Concepts and Future Challenges. Current Fungal Infection Reports, 2017, 11, 16-24.	2.6	6
99	Ploidy Determination in the Pathogenic Fungus Sporothrix spp Frontiers in Microbiology, 2019, 10, 284.	3.5	6
100	Microbiota-derived metabolites as diagnostic markers for respiratory fungal infections. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113473.	2.8	6
101	Genetic Variation in PFKFB3 Impairs Antifungal Immunometabolic Responses and Predisposes to Invasive Pulmonary Aspergillosis. MBio, 2021, 12, e0036921.	4.1	6
102	Paracoccin Overexpression in <i>Paracoccidioides brasiliensis</i> Enhances Fungal Virulence by Remodeling Chitin Properties of the Cell Wall. Journal of Infectious Diseases, 2021, 224, 164-174.	4.0	5
103	Polymorphisms within the TNFSF4 and MAPKAPK2 Loci Influence the Risk of Developing Invasive Aspergillosis: A Two-Stage Case Control Study in the Context of the aspBIOmics Consortium. Journal of Fungi (Basel, Switzerland), 2021, 7, 4.	3.5	5
104	Targeting immunometabolism in host-directed therapies to fungal disease. Clinical and Experimental Immunology, 2022, 208, 158-166.	2.6	5
105	PTX3 Inhibits Complement-Driven Macrophage Activation to Restrain Granuloma Formation in Sarcoidosis. American Journal of Respiratory and Critical Care Medicine, 0, , .	5.6	5
106	MAVS Expression in Alveolar Macrophages Is Essential for Host Resistance against <i>Aspergillus fumigatus</i> . Journal of Immunology, 2022, 209, 346-353.	0.8	5
107	High-Resolution Melting Assay for Genotyping Variants of the CYP2C19 Enzyme and Predicting Voriconazole Effectiveness. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	4
108	Mothers' distress exposure and children's withdrawn behavior – A moderating role for the Interferon Gamma gene (<i>IFNG</i>). Developmental Psychobiology, 2020, 62, 783-791.	1.6	4

#	Article	IF	CITATIONS
109	Functional Genetic Variants in ATG10 Are Associated with Acute Myeloid Leukemia. Cancers, 2021, 13, 1344.	3.7	4
110	Genetic variants in human BCL2L11 (BIM) are associated with ulcerative forms of Buruli ulcer. Emerging Microbes and Infections, 2021, 10, 223-225.	6.5	4
111	T-1237C polymorphism of TLR9 gene is not associated with multiple sclerosis in the Portuguese population. Multiple Sclerosis Journal, 2008, 14, 550-552.	3.0	3
112	Immunity and tolerance to infections in experimental hematopoietic transplantation. Best Practice and Research in Clinical Haematology, 2011, 24, 435-442.	1.7	3
113	TREM1 regulates antifungal immune responses in invasive pulmonary aspergillosis. Virulence, 2021, 12, 570-583.	4.4	3
114	Reply to Han et al.: On track for an IDO1-based personalized therapy in autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24037-24038.	7.1	2
115	Host immune genetic variations influence the risk of developing acute myeloid leukaemia: results from the NuCLEAR consortium. Blood Cancer Journal, 2020, 10, 75.	6.2	2
116	The potential role for topical imiquimod in the treatment of chronic mucocutaneous candidiasis caused by gainâ€ofâ€function mutation in <scp>STAT1</scp> : A caseâ€report. Dermatologic Therapy, 2021, 34, e15043.	1.7	2
117	Erythrocyte-derived liposomes for the treatment of inflammatory diseases. Journal of Drug Targeting, 2022, 30, 873-883.	4.4	2
118	Editorial: An Omics Perspective on Fungal Infection: Toward Next-Generation Diagnosis and Therapy. Frontiers in Microbiology, 2017, 8, 85.	3.5	1
119	Host Genetics Takes a Toll on Immunity to Cryptococcus. EBioMedicine, 2018, 37, 9-10.	6.1	1
120	Editorial overview: Emerging topics in host-fungus interactions. Current Opinion in Microbiology, 2020, 58, iii-v.	5.1	1
121	Editorial: Host and Pathogen Determinants of Allergic and Invasive Fungal Diseases. Frontiers in Immunology, 2020, 11, 856.	4.8	1
122	Understanding the genetic basis of immune responses to fungal infection. Expert Review of Anti-Infective Therapy, 2022, , $1-10$.	4.4	1
123	Genetic determinants of fungi-induced ROS production are associated with the risk of invasive pulmonary aspergillosis. Redox Biology, 2022, 55, 102391.	9.0	1
124	Host-Derived Biomarkers for Risk Assessment of Invasive Fungal Diseases. Methods in Molecular Biology, 2017, 1508, 153-165.	0.9	0
125	Metabolic Regulation of Innate Immunity to Fungal Infection. Experientia Supplementum (2012), 2018, 109, 403-420.	0.9	0
126	Role of Deficits in Pathogen Recognition Receptors in Infection Susceptibility. , 2018, , 115-131.		0

#	Article	IF	CITATIONS
127	Genetic Regulation of the Host-Fungus Interaction in the Pathogenesis of Aspergillosis. Current Fungal Infection Reports, 2019, 13, 77-85.	2.6	O
128	The Lung Microbiome, Metabolome, and Breath Volatolome in the Diagnosis of Pulmonary Disease. , $2019, , 297-305.$		0
129	The Portuguese Society for Immunology (SPI): history and mission. European Journal of Immunology, 2020, 50, 918-920.	2.9	O
130	Antifungal Vaccines and Immunotherapeutics. , 2015, , 267-288.		0
131	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis., 2020, 14, e0008125.		O
132	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis., 2020, 14, e0008125.		0
133	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis., 2020, 14, e0008125.		0
134	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis., 2020, 14, e0008125.		0