
Moonhyun Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1885819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemically tailorable colloidal particles from infinite coordination polymers. Nature, 2005, 438, 651-654.	13.7	610
2	Growth-Controlled Formation of Porous Coordination Polymer Particles. Journal of the American Chemical Society, 2008, 130, 16943-16946.	6.6	296
3	Advanced fabrication of metal–organic frameworks: template-directed formation of polystyrene@ZIF-8 core–shell and hollow ZIF-8 microspheres. Chemical Communications, 2012, 48, 221-223.	2.2	252
4	Supramolecular Metalâ^'Organometallic Coordination Networks Based on Quinonoid Ï€-Complexes. Accounts of Chemical Research, 2004, 37, 1-11.	7.6	230
5	Cobalt- and nitrogen-codoped porous carbon catalyst made from core–shell type hybrid metal–organic framework (ZIF-L@ZIF-67) and its efficient oxygen reduction reaction (ORR) activity. Applied Catalysis B: Environmental, 2019, 246, 322-329.	10.8	227
6	Selfâ€Templateâ€Directed Formation of Coordinationâ€Polymer Hexagonal Tubes and Rings, and their Calcination to ZnO Rings. Angewandte Chemie - International Edition, 2009, 48, 1459-1462.	7.2	214
7	Coordination polymer nanorods of Fe-MIL-88B and their utilization for selective preparation of hematite and magnetite nanorods. Chemical Communications, 2011, 47, 4138.	2.2	201
8	lon Exchange as a Way of Controlling the Chemical Compositions of Nano- and Microparticles Made from Infinite Coordination Polymers. Angewandte Chemie - International Edition, 2006, 45, 5492-5494.	7.2	193
9	Monitoring Shape Transformation from Nanowires to Nanocubes and Sizeâ€Controlled Formation of Coordination Polymer Particles. Angewandte Chemie - International Edition, 2008, 47, 2049-2051.	7.2	190
10	lsotropic and Anisotropic Growth of Metal–Organic Framework (MOF) on MOF: Logical Inference on MOF Structure Based on Growth Behavior and Morphological Feature. Journal of the American Chemical Society, 2016, 138, 14434-14440.	6.6	178
11	Multi Ballâ€Inâ€Ball Hybrid Metal Oxides. Advanced Materials, 2011, 23, 1720-1723.	11.1	146
12	Dual Changes in Conformation and Optical Properties of Fluorophores within a Metal–Organic Framework during Framework Construction and Associated Sensing Event. Journal of the American Chemical Society, 2014, 136, 12201-12204.	6.6	146
13	One-pot synthesis of magnetic particle-embedded porous carbon composites from metal–organic frameworks and their sorption properties. Chemical Communications, 2014, 50, 5476.	2.2	124
14	Construction of flexible metal–organic framework (MOF) papers through MOF growth on filter paper and their selective dye capture. Nanoscale, 2017, 9, 12850-12854.	2.8	118
15	Atypical Hybrid Metal–Organic Frameworks (MOFs): A Combinative Process for MOFâ€onâ€MOF Growth, Etching, and Structure Transformation. Angewandte Chemie - International Edition, 2020, 59, 1327-1333.	7.2	118
16	Morphology‣elective Formation and Morphologyâ€Dependent Gasâ€Adsorption Properties of Coordination Polymer Particles. Advanced Materials, 2009, 21, 674-677.	11.1	114
17	Synthesis of Bimetallic Conductive 2D Metal–Organic Framework (Co <i>_x</i> Ni <i>_y</i> â€CAT) and Its Mass Production: Enhanced Electrochemical Oxygen Reduction Activity. Small, 2019, 15, e1805232.	5.2	100
18	Tip-To-Middle Anisotropic MOF-On-MOF Growth with a Structural Adjustment. Journal of the American Chemical Society, 2020, 142, 3042-3049.	6.6	96

Мооннуин Он

#	Article	IF	CITATIONS
19	Systematic transformation of coordination polymer particles to hollow and non-hollow In2O3 with pre-defined morphology. Chemical Communications, 2009, , 4756.	2.2	94
20	Controlled Isotropic or Anisotropic Nanoscale Growth of Coordination Polymers: Formation of Hybrid Coordination Polymer Particles. ACS Nano, 2013, 7, 491-499.	7.3	94
21	Well-dispersed hollow porous carbon spheres synthesized by direct pyrolysis of core–shell type metal–organic frameworks and their sorption properties. Chemical Communications, 2014, 50, 4492.	2.2	86
22	Coordination Polymers from Silver(I) and Bifunctional Pyridyl Ligands. Inorganic Chemistry, 2005, 44, 2647-2653.	1.9	81
23	Oneâ€Pot Synthesis of Silica@Coordination Polymer Core–Shell Microspheres with Controlled Shell Thickness. Advanced Materials, 2011, 23, 1716-1719.	11.1	76
24	Facile Synthetic Route for Thickness and Composition Tunable Hollow Metal Oxide Spheres from Silicaâ€Templated Coordination Polymers. Advanced Materials, 2011, 23, 3161-3164.	11.1	72
25	Wellâ€Arranged and Confined Incorporation of PdCo Nanoparticles within a Hollow and Porous Metal–Organic Framework for Superior Catalytic Activity. Angewandte Chemie - International Edition, 2019, 58, 866-871.	7.2	69
26	Morphological and Structural Evolutions of Metal–Organic Framework Particles from Amorphous Spheres to Crystalline Hexagonal Rods. Angewandte Chemie - International Edition, 2015, 54, 10564-10568.	7.2	65
27	Unbalanced MOF-on-MOF growth for the production of a lopsided core–shell of MIL-88B@MIL-88A with mismatched cell parameters. Chemical Communications, 2019, 55, 43-46.	2.2	57
28	Hollow Metal–Organic Framework Microparticles Assembled via a Self-Templated Formation Mechanism. Crystal Growth and Design, 2015, 15, 5169-5173.	1.4	52
29	η5-Semiquinone and η4-Quinone Complexes of Manganese Tricarbonyl. Intermolecular Hydrogen Bonding in the Solid State and in Solution. Organometallics, 2002, 21, 1290-1295.	1.1	51
30	Toward the Rational Design of Supramolecular Coordination Polymers. The Effect of Solvent and Substituent Changes on the Structure of Self-Assembled Metal-Organometallic Networks. Organometallics, 2003, 22, 2364-2366.	1.1	48
31	Improvement in Crystallinity and Porosity of Poorly Crystalline Metal–Organic Frameworks (MOFs) through Their Induced Growth on a Well-Crystalline MOF Template. Inorganic Chemistry, 2018, 57, 9048-9054.	1.9	46
32	Facile Synthesis of Au or Ag Nanoparticles-Embedded Hollow Carbon Microspheres from Metal-Organic Framework Hybrids and Their Efficient Catalytic Activities. Small, 2016, 12, 2425-2431.	5.2	45
33	A Novel 3D Brick-Wall Coordination Network Based on Nodes with Square-Pyramidal Connectivity. Angewandte Chemie - International Edition, 2003, 42, 2026-2028.	7.2	40
34	A coordination network containing metal–organometallic secondary building units based on ï€-bonded benzoquinone complexes. Chemical Communications, 2002, , 2168-2169.	2.2	39
35	Synthesis of hybrid metal–organic frameworks of {Fe _x M _y M′ _{1â`'xâ`'y} }-MIL-88B and the use of anions to control their structural features. Nanoscale, 2016, 8, 16743-16751.	2.8	36
36	Synthesis and Photoluminescence Properties of Eu 3+ â€Doped Silica@Coordination Polymer Core–Shell Structures and Their Calcinated Silica@Gd 2 O 3 :Eu and Hollow Gd 2 O 3 :Eu Microsphere Products. Small, 2013, 9, 561-569.	5.2	34

Мооннуин Он

#	Article	IF	CITATIONS
37	Atypical Hybrid Metal–Organic Frameworks (MOFs): A Combinative Process for MOFâ€onâ€MOF Growth, Etching, and Structure Transformation. Angewandte Chemie, 2020, 132, 1343-1349.	1.6	32
38	Self-assembly of fluorescent and magnetic Fe3O4@coordination polymer nanochains. Chemical Communications, 2014, 50, 7617.	2.2	29
39	Highly effective heterogeneous chemosensors of luminescent silica@coordination polymer core-shell micro-structures for metal ion sensing. Scientific Reports, 2014, 4, 6518.	1.6	29
40	The Remote Activation of Chemical Bondsvia Metal Coordination. Advanced Synthesis and Catalysis, 2003, 345, 1053-1060.	2.1	25
41	Wellâ€Arranged and Confined Incorporation of PdCo Nanoparticles within a Hollow and Porous Metal–Organic Framework for Superior Catalytic Activity. Angewandte Chemie, 2019, 131, 876-881.	1.6	23
42	Zeolitic Imidazolate Framework-Based Composite Incorporated with Well-Dispersed CoNi Nanoparticles for Efficient Catalytic Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 18625-18633.	4.0	23
43	The η4-o-Benzoquinone Manganese Tricarbonyl Anion (o-QMTC) as an Organometalloligand in the Formation of M(o-QMTC)2(Lâ^'L) Complexes (M = Mn, Co, Cd; Lâ^'L = bipy, phen):  Generation of Neutral 2-D Networks Containing Two Types of Ï€â^'Ĩ€ Stacking. Organometallics, 2003, 22, 1437-1442.	1.1	21
44	Monitoring and analysis of the seed-directed growth of micro-sized hexapod coordination polymers. CrystEngComm, 2010, 12, 1060.	1.3	21
45	Coordination polymers with macrocyclic cages and pockets within their backbones. Chemical Communications, 2004, , 2684.	2.2	19
46	Fluorescent octahedron and rounded-octahedron coordination polymer particles (CPPs). CrystEngComm, 2010, 12, 3959.	1.3	19
47	Lattice-Guided Construction and Harvest of a Naturally Nonpreferred Metal–Organic Framework. ACS Nano, 2021, 15, 17907-17916.	7.3	17
48	Systematic Formation of Multilayered Core–Shell Microspheres through the Multistep Growth of Coordination Polymers. Chemistry - A European Journal, 2013, 19, 6546-6550.	1.7	15
49	Self-assembly of metal-organometallic coordination networks. Macromolecular Symposia, 2003, 196, 101-112.	0.4	14
50	Coordination Polymer Nanobamboos of {Fe _{<i>x</i>} In _{1â^`<i>x</i>} }â€MILâ€88B: Induced Formation of a Virtual Inâ€MILâ€88B. Chemistry - A European Journal, 2014, 20, 5559-5564.	1.7	11
51	Micro-crystals of metal–organic frameworks constructed from pyrene-based organic linkers and lanthanide ions for tunable white light emission. CrystEngComm, 2016, 18, 8372-8376.	1.3	11
52	Porous Composites Embedded With Cu and Co Nanoparticles for Efficient Catalytic Reduction of <scp>4â€Nitrophenol</scp> . Bulletin of the Korean Chemical Society, 2021, 42, 303-308.	1.0	11
53	Competitive formation between 2D and 3D metal-organic frameworks: insights into the selective formation and lamination of a 2D MOF. IUCrJ, 2019, 6, 681-687.	1.0	11
54	Structural and Morphological Transformations of In-MIL-68-Based Hexagonal Lumps to QMOF-2-Based Pointed Hexagonal Rods by Means of Destruction and Reconstruction Processes. European Journal of Inorganic Chemistry, 2014, 2014, 6220-6224.	1.0	10

Мооннуин Он

#	Article	IF	CITATIONS
55	Selective formation of five coordination polymer particles (CPPs) and their gas sorption properties. CrystEngComm, 2012, 14, 2837.	1.3	7
56	A Novel 3D Brick-Wall Coordination Network Based on Nodes with Square-Pyramidal Connectivity. Angewandte Chemie, 2003, 115, 2072-2074.	1.6	6
57	Organometalloligands as Components in Supramolecular Coordination Networks. , 2005, , 259-283.		2
58	Eu ³⁺ Dopants: Synthesis and Photoluminescence Properties of Eu ³⁺ â€Doped Silica@Coordination Polymer Core–Shell Structures and Their Calcinated Silica@Gd ₂ O ₃ :Eu and Hollow Gd ₂ O ₃ :Eu Microsphere Products (Small 4/2013). Small, 2013, 9, 490-490.	5.2	1
59	Rational manufacture of yolk–shell and core–shell metal oxide double layers from silica-templated coordination polymer double layers. Materials Chemistry Frontiers, 2021, 5, 3404-3412.	3.2	1
60	Inside Cover: Selfâ€Templateâ€Directed Formation of Coordinationâ€Polymer Hexagonal Tubes and Rings, and their Calcination to ZnO Rings (Angew. Chem. Int. Ed. 8/2009). Angewandte Chemie - International Edition, 2009, 48, 1338-1338.	7.2	0