Somayeh Gholipour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1885666/publications.pdf

Version: 2024-02-01

23 papers 1,460 citations

471061 17 h-index 23 g-index

25 all docs

25 docs citations

25 times ranked 2864 citing authors

#	Article	IF	Citations
1	The non-linear third order susceptibility of Cu (MÂ=ÂZn, Ni, Co)SnS coated on perovskite thin films. Chemical Physics Letters, 2022, 795, 139501.	1.2	4
2	Investigation of dielectric, linear, and nonlinear optical properties of synthesized 2D Ruddlesden-Popper-type halide perovskite. Optics and Laser Technology, 2022, 155, 108352.	2.2	10
3	Photoelectrochemical Waterâ€Splitting Using CuOâ€Based Electrodes for Hydrogen Production: A Review. Advanced Materials, 2021, 33, e2007285.	11.1	127
4	Encapsulation Strategies for Highly Stable Perovskite Solar Cells under Severe Stress Testing: Damp Heat, Freezing, and Outdoor Illumination Conditions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45455-45464.	4.0	34
5	Bandgap tuning and compositional exchange for lead halide perovskite materials. , 2020, , 1-22.		9
6	Stannite Quaternary Cu2M(M = Ni, Co)SnS4 as Low Cost Inorganic Hole Transport Materials in Perovskite Solar Cells. Energies, 2020, 13, 5938.	1.6	7
7	Recent Advances in Plasmonic Perovskite Solar Cells. Advanced Science, 2020, 7, 1902448.	5.6	78
8	Enhanced photovoltaic performance and stability of perovskite solar cells by interface engineering with poly(4-vinylpyridine) and Cu2ZnSnS4&CNT. Solar Energy, 2020, 201, 908-915.	2.9	16
9	Perovskites for Laser and Detector Applications. Energy and Environmental Materials, 2019, 2, 146-153.	7.3	42
10	Carbon Nanoparticles in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702719.	10.2	74
11	Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800177.	10.2	106
12	Effect of Cation Composition on the Mechanical Stability of Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702116.	10.2	130
13	Reducing Surface Recombination by a Poly(4-vinylpyridine) Interlayer in Perovskite Solar Cells with High Open-Circuit Voltage and Efficiency. ACS Omega, 2018, 3, 5038-5043.	1.6	38
14	From Exceptional Properties to Stability Challenges of Perovskite Solar Cells. Small, 2018, 14, e1802385.	5.2	58
15	Globularity $\hat{a} \in S$ elected Large Molecules for a New Generation of Multication Perovskites. Advanced Materials, 2017, 29, 1702005.	11.1	81
16	Perovskite solar cell – electrochemical double layer capacitor interplay. Electrochimica Acta, 2017, 258, 825-833.	2.6	18
17	An easy method to modify PEDOT:PSS/perovskite interfaces for solar cells with efficiency exceeding 15%. RSC Advances, 2016, 6, 65594-65599.	1.7	31
	Mr. Joseph J. Gu. J. G. J. J. Mr. J. G. J. J. Mr. J. G. J. J. Mr. J. G. J. J. W. G. B. V.	T: FTO 0	0.0 DT/0

Mixedâ∈Halide CH₃NH₃Pbl_{3â^'<i>x</i>}X_{<i>x</i>}(X=Cl, Br,) Tj ETQq0 0 0 rgBT /Ove 1.0 40 ChemPhysChem, 2016, 17, 2382-2388.

#	Article	IF	CITATIONS
19	Enhancing Efficiency of Perovskite Solar Cells via Nâ€doped Graphene: Crystal Modification and Surface Passivation. Advanced Materials, 2016, 28, 8681-8686.	11.1	281
20	Highly Efficient and Stable Perovskite Solar Cells based on a Lowâ€Cost Carbon Cloth. Advanced Energy Materials, 2016, 6, 1601116.	10.2	107
21	Catalytic Activity of the Spinel Ferrite Nanocrystals on the Growth of Carbon Nanotubes. Journal of Superconductivity and Novel Magnetism, 2013, 26, 429-435.	0.8	17
22	Structural, Magnetic, and Optical Properties of Zinc- and Copper-Substituted Nickel Ferrite Nanocrystals. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2443-2455.	0.8	120
23	Structural Phase of Y358 Superconductor Comparison with Y123. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2253-2258.	0.8	30