
Alexey S Cherevan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1885290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting. Journal of Energy Chemistry, 2022, 64, 406-431.	7.1	125
2	Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis. Nature Communications, 2022, 13, 282.	5.8	83
3	Surface Anchoring and Active Sites of [Mo ₃ S ₁₃] ^{2–} Clusters as Co-Catalysts for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2022, 12, 6641-6650.	5.5	19
4	Immobilization of a [Co ^{III} Co ^{II} (H ₂ O)W ₁₁ O ₃₉] ^{7–} Polyoxoanion for the Photocatalytic Oxygen Evolution Reaction. ACS Materials Au, 2022, 2, 505-515.	2.6	2
5	Ti-based MOFs: New insights on the impact of ligand composition and hole scavengers on stability, charge separation and photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 283, 119626.	10.8	121
6	Hybrid carbon spherogels: carbon encapsulation of nano-titania. Chemical Communications, 2021, 57, 3905-3908.	2.2	7
7	Elucidating the formation and active state of Cu co-catalysts for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 21958-21971.	5.2	17
8	Isolation Strategy towards Earth-Abundant Single-Site Co-Catalysts for Photocatalytic Hydrogen Evolution Reaction. Catalysts, 2021, 11, 417.	1.6	12
9	Phosphateâ€Templated Encapsulation of a {Co ^{II} ₄ O ₄ } Cubane in Germanotungstates as Carbonâ€Free Homogeneous Water Oxidation Photocatalysts. ChemSusChem, 2021, 14, 2529-2536.	3.6	10
10	Samariumâ€Đoped Nickel Oxide for Superior Inverted Perovskite Solar Cells: Insight into Doping Effect for Electronic Applications. Advanced Functional Materials, 2021, 31, 2102452.	7.8	41
11	Polyoxometalates on Functional Substrates: Concepts, Synergies, and Future Perspectives. Advanced Science, 2020, 7, 1903511.	5.6	129
12	Immobilization of Co, Mn, Ni and Fe oxide co-catalysts on TiO ₂ for photocatalytic water splitting reactions. Journal of Materials Chemistry A, 2019, 7, 18568-18579.	5.2	66
13	Femtosecond laser-assisted synthesis of Ni/Au BONs in various alcoholic solvents. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	9
14	Beware of Doping: Ta ₂ O ₅ Nanotube Photocatalyst Using CNTs as Hard Templates. ACS Applied Energy Materials, 2018, 1, 1259-1267.	2.5	7
15	A crystalline and 3D periodically ordered mesoporous quaternary semiconductor for photocatalytic hydrogen generation. Nanoscale, 2018, 10, 3225-3234.	2.8	25
16	How to Evaluate and Manipulate Charge Transfer and Photocatalytic Response at Hybrid Nanocarbon–Metal Oxide Interfaces. Advanced Functional Materials, 2018, 28, 1704730.	7.8	9
17	Ordered Mesoporous TiO ₂ Gyroids: Effects of Pore Architecture and Nbâ€Doping on Photocatalytic Hydrogen Evolution under UV and Visible Irradiation. Advanced Energy Materials, 2018, 8, 1802566.	10.2	46
18	Mesoporous Semiconductors: A New Model To Assess Accessible Surface Area and Increased Photocatalytic Activity?. ACS Applied Energy Materials, 2018, 1, 5787-5799.	2.5	34

ALEXEY S CHEREVAN

#	Article	IF	CITATIONS
19	Large area photoelectrodes based on hybrids of CNT fibres and ALD-grown TiO ₂ . Journal of Materials Chemistry A, 2017, 5, 24695-24706.	5.2	36
20	Growth, structure and stability of sputter-deposited MoS ₂ thin films. Beilstein Journal of Nanotechnology, 2017, 8, 1115-1126.	1.5	44
21	Growth mechanism and electrochemical properties of hierarchical hollow SnO2 microspheres with a "chestnut―morphology. CrystEngComm, 2017, 19, 6454-6463.	1.3	7
22	Dual Excitation Transient Photocurrent Measurement for Charge Transfer Studies in Nanocarbon Hybrids and Composites. Advanced Materials Interfaces, 2016, 3, 1600244.	1.9	4
23	Ordered gyroidal tantalum oxide photocatalysts: eliminating diffusion limitations and tuning surface barriers. Nanoscale, 2016, 8, 16694-16701.	2.8	27
24	Nanocarbon Hybrid Materials. , 2016, , 625-646.		0
25	Non-destructive functionalisation for atomic layer deposition of metal oxides on carbon nanotubes: effect of linking agents and defects. Nanoscale, 2015, 7, 3028-3034.	2.8	36
26	Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Applied Catalysis B: Environmental, 2015, 179, 574-582.	10.8	117
27	Application and Future Challenges of Functional Nanocarbon Hybrids. Advanced Materials, 2014, 26, 2295-2318.	11.1	290
28	Interface engineering in nanocarbon–Ta ₂ O ₅ hybrid photocatalysts. Energy and Environmental Science, 2014, 7, 791-796.	15.6	62
29	Application of Functional Hybrids Incorporating Carbon Nanotubes or Graphene. , 2014, , 387-433.		4
30	Effects of synthesis conditions and the mechanism of homopolymerization of acrylonitrile on the thermal behavior of the resulting polymer. Polymer Science - Series B, 2013, 55, 1-13.	0.3	10
31	Solvent effect in the formation of polyconjugated system during pyrolysis of polyacrylonitrile. Russian Chemical Bulletin, 2012, 61, 259-263.	0.4	2
32	Controlled synthesis of polyacrylonitrile via reversible addition-fragmentation chain-transfer pseudoliving radical polymerization and its thermal behavior. Polymer Science - Series B, 2011, 53, 391-403.	0.3	27