
Laura A Volpicelli-Daley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1885167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exogenous α-Synuclein Fibrils Induce Lewy Body Pathology Leading to Synaptic Dysfunction and Neuron Death. Neuron, 2011, 72, 57-71.	3.8	1,249
2	Addition of exogenous α-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous I±-synuclein to Lewy body and Lewy neurite–like aggregates. Nature Protocols, 2014, 9, 2135-2146.	5.5	496
3	Pharmacological Rescue of Mitochondrial Deficits in iPSC-Derived Neural Cells from Patients with Familial Parkinson's Disease. Science Translational Medicine, 2012, 4, 141ra90.	5.8	444
4	Lewy Body-like α-Synuclein Aggregates Resist Degradation and Impair Macroautophagy. Journal of Biological Chemistry, 2013, 288, 15194-15210.	1.6	254
5	Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nature Neuroscience, 2020, 23, 327-336.	7.1	247
6	Formation of α-synuclein Lewy neurite–like aggregates in axons impedes the transport of distinct endosomes. Molecular Biology of the Cell, 2014, 25, 4010-4023.	0.9	202
7	<i>TMEM106B</i> , the Risk Gene for Frontotemporal Dementia, Is Regulated by the microRNA-132/212 Cluster and Affects Progranulin Pathways. Journal of Neuroscience, 2012, 32, 11213-11227.	1.7	195
8	microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease. Journal of Neuroscience, 2016, 36, 2383-2390.	1.7	195
9	Abrogation of α-synuclein–mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9289-9294.	3.3	187
10	Calcium Entry and Â-Synuclein Inclusions Elevate Dendritic Mitochondrial Oxidant Stress in Dopaminergic Neurons. Journal of Neuroscience, 2013, 33, 10154-10164.	1.7	174
11	Wnt3a-Mediated Formation of Phosphatidylinositol 4,5-Bisphosphate Regulates LRP6 Phosphorylation. Science, 2008, 321, 1350-1353.	6.0	173
12	Leucine-rich Repeat Kinase 2 (LRRK2) Pharmacological Inhibition Abates α-Synuclein Gene-induced Neurodegeneration. Journal of Biological Chemistry, 2015, 290, 19433-19444.	1.6	171
13	Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2634-E2643.	3.3	170
14	LRRK2 Antisense Oligonucleotides Ameliorate α-Synuclein Inclusion Formation in a Parkinson's Disease Mouse Model. Molecular Therapy - Nucleic Acids, 2017, 8, 508-519.	2.3	167
15	G2019S-LRRK2 Expression Augments Â-Synuclein Sequestration into Inclusions in Neurons. Journal of Neuroscience, 2016, 36, 7415-7427.	1.7	156
16	Initiation and propagation of $\hat{l}\pm$ -synuclein aggregation in the nervous system. Molecular Neurodegeneration, 2020, 15, 19.	4.4	156
17	Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson's Disease in Rodents. Journal of Parkinson's Disease, 2018, 8, 303-322.	1.5	151
18	Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. Journal of Clinical Investigation, 2012, 122, 4401-4411.	3.9	137

LAURA A VOLPICELLI-DALEY

#	Article	IF	CITATIONS
19	α-Synuclein fibril-induced inclusion spread in rats and mice correlates with dopaminergic Neurodegeneration. Neurobiology of Disease, 2017, 105, 84-98.	2.1	129
20	Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. Journal of Comparative Neurology, 2014, 522, 2465-2480.	0.9	110
21	Defining α-synuclein species responsible for Parkinson's disease phenotypes in mice. Journal of Biological Chemistry, 2019, 294, 10392-10406.	1.6	96
22	How can <scp>rAAV</scp> â€i±â€synuclein and the fibril αâ€synuclein models advance our understanding of Parkinson's disease?. Journal of Neurochemistry, 2016, 139, 131-155.	2.1	84
23	Reduction of Synaptojanin 1 Accelerates AÎ ² Clearance and Attenuates Cognitive Deterioration in an Alzheimer Mouse Model. Journal of Biological Chemistry, 2013, 288, 32050-32063.	1.6	68
24	Regulation of muscarinic acetylcholine receptor function in acetylcholinesterase knockout mice. Pharmacology Biochemistry and Behavior, 2003, 74, 977-986.	1.3	65
25	Phosphatidylinositol-4-Phosphate 5-Kinases and Phosphatidylinositol 4,5-Bisphosphate Synthesis in the Brain. Journal of Biological Chemistry, 2010, 285, 28708-28714.	1.6	63
26	α-Synuclein fibril-induced paradoxical structural and functional defects in hippocampal neurons. Acta Neuropathologica Communications, 2018, 6, 35.	2.4	62
27	Neuronal vulnerability in Parkinson disease: Should the focus be on axons and synaptic terminals?. Movement Disorders, 2019, 34, 1406-1422.	2.2	62
28	Altered Striatal Function and Muscarinic Cholinergic Receptors in Acetylcholinesterase Knockout Mice. Molecular Pharmacology, 2003, 64, 1309-1316.	1.0	60
29	Prion-like propagation of pathology in Parkinson disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 153, 321-335.	1.0	58
30	Trophic factors for Parkinson's disease: To live or let die. Movement Disorders, 2015, 30, 1715-1724.	2.2	55
31	Sensitivity and specificity of phospho‣er129 αâ€synuclein monoclonal antibodies. Journal of Comparative Neurology, 2018, 526, 1978-1990.	0.9	55
32	Effects of α-synuclein on axonal transport. Neurobiology of Disease, 2017, 105, 321-327.	2.1	51
33	14-3-3 Proteins Reduce Cell-to-Cell Transfer and Propagation of Pathogenic α-Synuclein. Journal of Neuroscience, 2018, 38, 8211-8232.	1.7	48
34	Behavioral defects associated with amygdala and cortical dysfunction in mice with seeded α-synuclein inclusions. Neurobiology of Disease, 2020, 134, 104708.	2.1	47
35	Transforming Growth Factor Beta (TGF- $\hat{1}^2$) Is a Muscle Biomarker of Disease Progression in ALS and Correlates with Smad Expression. PLoS ONE, 2015, 10, e0138425.	1.1	44
36	Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models. Journal of Neuroscience, 2015, 35, 10731-10749.	1.7	44

LAURA A VOLPICELLI-DALEY

#	Article	IF	CITATIONS
37	Hsp110 mitigates α-synuclein pathology in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24310-24316.	3.3	44
38	The β- and γ-isoforms of type I PIP5K regulate distinct stages of Ca2+ signaling in mast cells. Journal of Cell Science, 2009, 122, 2567-2574.	1.2	40
39	Molecular Mechanisms Underlying Synaptic and Axon Degeneration in Parkinson's Disease. Frontiers in Cellular Neuroscience, 2021, 15, 626128.	1.8	38
40	Altered hippocampal muscarinic receptors in acetylcholinesterase-deficient mice. Annals of Neurology, 2003, 53, 788-796.	2.8	34
41	Pathological α-synuclein recruits LRRK2 expressing pro-inflammatory monocytes to the brain. Molecular Neurodegeneration, 2022, 17, 7.	4.4	34
42	Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils. Redox Biology, 2017, 11, 429-437.	3.9	33
43	Multiplicity of α-Synuclein Aggregated Species and Their Possible Roles in Disease. International Journal of Molecular Sciences, 2020, 21, 8043.	1.8	33
44	Pα-syn* mitotoxicity is linked to MAPK activation and involves tau phosphorylation and aggregation at the mitochondria. Neurobiology of Disease, 2019, 124, 248-262.	2.1	30
45	Phosphoinositides' link to neurodegeneration. Nature Medicine, 2007, 13, 784-786.	15.2	28
46	Unique Functional and Structural Properties of the LRRK2 Protein ATP-binding Pocket. Journal of Biological Chemistry, 2014, 289, 32937-32951.	1.6	26
47	Inhibition of LRRK2 kinase activity promotes anterograde axonal transport and presynaptic targeting of α-synuclein. Acta Neuropathologica Communications, 2021, 9, 180.	2.4	16
48	Immunohistochemical Localization of Proteins in the Nervous System. Current Protocols in Neuroscience, 2003, 25, Unit 1.2.	2.6	9
49	Templated α-synuclein inclusion formation is independent of endogenous tau. ENeuro, 2021, 8, ENEURO.0458-20.2021.	0.9	9
50	Alpha-synuclein alters the faecal viromes of rats in a gut-initiated model of Parkinson's disease. Communications Biology, 2021, 4, 1140.	2.0	6
51	Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. Journal of Comparative Neurology, 2014, 522, Spc1-Spc1.	0.9	2
52	Editorial: Pathogenic templating proteins in Neurodegenerative Disease. Neurobiology of Disease, 2018, 109, 175-177.	2.1	2
53	Assays for Neuronal Defects Caused by Early Formation of α-Synuclein Inclusions in Primary Cultured Neurons. Methods in Molecular Biology, 2019, 1948, 1-14.	0.4	2

54 Invisible Killers. Movement Disorders, 2016, 31, 44-44.

2.2 1

#	Article	IF	CITATIONS
55	Correction: Defining α-synuclein species responsible for Parkinson's disease phenotypes in mice Journal of Biological Chemistry, 2020, 295, 1142.	1.6	0